Force Clamp Systems for Evaluation of Mechanotransduction

用于评估机械传导的力夹系统

基本信息

  • 批准号:
    8244400
  • 负责人:
  • 金额:
    $ 46.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The long-term goal of this research is to discover the force transmission and force transduction pathways responsible for touch and proprioception. These senses are essential for social communication and every aspect of daily life from sitting, to standing, to running; however, their function is disrupted in both inherited and acquired diseases, including HIV-AIDS and diabetes. Even partial loss of sensory function as in diabetic peripheral neuropathy (DPN) has devastating consequences; DPN affects an estimated 15 million Americans and is the dominant risk factor in lower limb amputations. Thus, the loss of touch and proprioception is common, associated not only with discomfort and pain, but also with a decrease in the quality of life. Despite this, diagnostic tools and treatments for the dysfunction of touch and proprioception remain poorly developed, principally because little is known about how these senses work. This knowledge gap reflects a lack of adequate devices for delivering controlled mechanical stimuli and of animal models amenable to analysis of the mechanobiology of touch sensation. The objective of the proposed research is to bridge this gap by developing new devices for controlled force delivery, improved animal models for dissecting force transmission and transduction pathways, and new analytical methods for fundamental study of the relevant mechanics of this basic life process. The proposed research uses the simple roundworm, Caenorhabditis elegans, because more is understood about its sense of touch than that of any other animal. Research using C. elegans has successfully revealed mechanistic aspects of several fundamental and conserved biological processes, including touch sensation. It was in C. elegans, for instance, that the first ion channel proteins required for touch sensation were identified ~20 years ago. Because analogous proteins are expressed in mammalian touch receptor neurons, they may also contribute to touch sensation. At present, C. elegans is the only animal in which we know which proteins form the mechano-electrical transduction channels responsible for detecting force in touch receptor neurons. This knowledge enables a level of analysis that is not currently available in mammalian models. The central hypothesis we are testing is that both force-sensitivity and response dynamics are determined by the interplay of skin mechanics, neuron position, and intracellular, cytoskeletal structures. To test this hypothesis, we will develop new metrics for quantitative assessment of touch sensitivity; new microfabricated tools suitable for delivering pN-5N forces, new in vitro models of touch receptor neurons, and build new models of force transmission and force transduction. The specific aims are: 1) Test the hypothesis that skin mechanics, neuron position, and the neuronal cytoskeleton regulate touch sensitivity in vivo; 2) Assess the impact of body wall muscle tone and internal hydrostatic pressure on touch sensation in vivo; 3) Identify mechanisms of mechano- electrical transduction channel activation and adaptation. PUBLIC HEALTH RELEVANCE: Normal touch sensation and proprioception are essential for daily life and require the activation of specialized mechanoreceptor neurons. When the function of such neurons is disrupted by aging, disease (HIV-AIDS, diabetes), and medical interventions (chemotherapy), small injuries often lead to wounds that fail to heal and are treated only by limb amputation. Such pathologies afflict millions of Americans and account for tens of billions of dollars in health-care costs annually. By revealing the mechanisms by which force is transmitted from the skin to mechanoreceptor neurons and developing microfabricated tools for research, these studies may provide new strategies for 1) interventions that could restore sensitivity in individuals afflicted by sensory neuropathy and for 2) improved diagnostic tools that may aid in the application of interventions that minimize the loss of sensory function.
描述(由申请人提供):本研究的长期目标是发现负责触觉和本体感觉的力传递和力传导途径。这些感官对于社交沟通以及日常生活的各个方面(从坐着、站立到跑步)至关重要;然而,它们的功能在遗传性和获得性疾病(包括艾滋病毒/艾滋病和糖尿病)中都会受到破坏。即使是部分感觉功能丧失,如糖尿病周围神经病变(DPN),也会产生毁灭性的后果; DPN 影响着大约 1500 万美国人,是下肢截肢的主要危险因素。因此,触觉和本体感觉的丧失很常见,不仅与不适和疼痛有关,而且与生活质量的下降有关。尽管如此,针对触觉和本体感觉功能障碍的诊断工具和治疗方法仍然不够成熟,主要是因为人们对这些感觉如何工作知之甚少。这种知识差距反映出缺乏足够的设备来提供受控的机械刺激,也缺乏适合分析触觉机械生物学的动物模型。拟议研究的目的是通过开发用于受控力传递的新设备、用于剖析力传递和传导途径的改进动物模型以及用于对这一基本生命过程的相关力学进行基础研究的新分析方法来弥补这一差距。拟议的研究使用了简单的蛔虫——秀丽隐杆线虫,因为人们对它的触觉的了解比任何其他动物都多。使用秀丽隐杆线虫的研究成功揭示了几个基本和保守的生物过程的机制,包括触觉。例如,约 20 年前,在线虫中首次发现了触觉所需的离子通道蛋白。由于类似的蛋白质在哺乳动物触觉感受器神经元中表达,因此它们也可能有助于触觉。目前,线虫是我们唯一知道哪些蛋白质形成负责检测触觉感受器神经元力的机电转导通道的动物。这些知识可以实现目前哺乳动物模型中无法实现的分析水平。我们正在测试的中心假设是,力敏感性和响应动力学都是由皮肤力学、神经元位置和细胞内、细胞骨架结构的相互作用决定的。为了检验这一假设,我们将开发新的指标来定量评估触摸灵敏度;适用于传递 pN-5N 力的新型微加工工具、触觉感受器神经元的新型体外模型,以及建立力传递和力传导的新模型。具体目标是:1)检验皮肤力学、神经元位置和神经元细胞骨架在体内调节触觉敏感性的假设; 2)评估体壁肌张力和内部静水压对体内触觉的影响; 3) 确定机电传导通道激活和适应的机制。 公共健康相关性:正常的触觉和本体感觉对于日常生活至关重要,需要激活专门的机械感受器神经元。当这些神经元的功能因衰老、疾病(艾滋病、糖尿病)和医疗干预(化疗)而受到破坏时,小损伤往往会导致伤口无法愈合,只能通过截肢来治疗。此类病症困扰着数百万美国人,每年造成数百亿美元的医疗费用。通过揭示力从皮肤传递到机械感受器神经元的机制并开发用于研究的微型工具,这些研究可能提供新的策略:1)可以恢复患有感觉神经病的个体的敏感性的干预措施;2)改进的诊断工具可能有助于采取干预措施,最大限度地减少感觉功能的丧失。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Miriam B Goodman其他文献

Insight into Deg/enac Channel Gating from Genetics and Structure Trimeric Deg/enac Channel Structures
从遗传学和结构洞察 Deg/enac 通道门控 三聚体 Deg/enac 通道结构
  • DOI:
    10.1101/2021.02.09.430231
  • 发表时间:
    2021-02-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amy L. Eastwood;Miriam B Goodman
  • 通讯作者:
    Miriam B Goodman

Miriam B Goodman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Miriam B Goodman', 18)}}的其他基金

The biophysics of skin-neuron sensory tactile organs and their sensitivity to mechanical and chemical stress
皮肤神经元感觉触觉器官的生物物理学及其对机械和化学应力的敏感性
  • 批准号:
    10176122
  • 财政年份:
    2020
  • 资助金额:
    $ 46.68万
  • 项目类别:
The biophysics of skin-neuron sensory tactile organs and their sensitivity to mechanical and chemical stress
皮肤神经元感觉触觉器官的生物物理学及其对机械和化学应力的敏感性
  • 批准号:
    10534243
  • 财政年份:
    2017
  • 资助金额:
    $ 46.68万
  • 项目类别:
The biophysics of skin-neuron sensory tactile organs and their sensitivity to mechanical and chemical stress
皮肤神经元感觉触觉器官的生物物理学及其对机械和化学应力的敏感性
  • 批准号:
    10063587
  • 财政年份:
    2017
  • 资助金额:
    $ 46.68万
  • 项目类别:
The biophysics of skin-neuron sensory tactile organs and their sensitivity to mechanical and chemical stress
皮肤神经元感觉触觉器官的生物物理学及其对机械和化学应力的敏感性
  • 批准号:
    10320377
  • 财政年份:
    2017
  • 资助金额:
    $ 46.68万
  • 项目类别:
The biophysics of skin-neuron sensory tactile organs and their sensitivity to mechanical and chemical stress
皮肤神经元感觉触觉器官的生物物理学及其对机械和化学应力的敏感性
  • 批准号:
    10633441
  • 财政年份:
    2017
  • 资助金额:
    $ 46.68万
  • 项目类别:
Genetic and Physical Basis of Mechanical Neuroprotection
机械神经保护的遗传和物理基础
  • 批准号:
    8858468
  • 财政年份:
    2015
  • 资助金额:
    $ 46.68万
  • 项目类别:
Genetic and Physical Basis of Mechanical Neuroprotection
机械神经保护的遗传和物理基础
  • 批准号:
    9005894
  • 财政年份:
    2015
  • 资助金额:
    $ 46.68万
  • 项目类别:
Sensory Transduction
感觉传导
  • 批准号:
    8719730
  • 财政年份:
    2014
  • 资助金额:
    $ 46.68万
  • 项目类别:
Force Clamp Systems for Evaluation of Mechanotransduction
用于评估机械传导的力夹系统
  • 批准号:
    8041127
  • 财政年份:
    2007
  • 资助金额:
    $ 46.68万
  • 项目类别:
Force Clamp Systems for Evaluation of Mechanotransduction
用于评估机械传导的力夹系统
  • 批准号:
    8470165
  • 财政年份:
    2007
  • 资助金额:
    $ 46.68万
  • 项目类别:

相似国自然基金

从CD4+、CD8+T细胞免疫活化分子及其上游调控因子表达探究健脾祛湿法治疗艾滋病免疫调节机制
  • 批准号:
    81460716
  • 批准年份:
    2014
  • 资助金额:
    48.0 万元
  • 项目类别:
    地区科学基金项目
HAART过程中HCV复制增强与肝细胞MAVS抗病毒通路的关系研究
  • 批准号:
    81201286
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RP1 Screen 2 Prevent
RP1 屏蔽 2 预防
  • 批准号:
    10595901
  • 财政年份:
    2023
  • 资助金额:
    $ 46.68万
  • 项目类别:
Adapting and testing a combination peer navigation and mHealth intervention to enhance treatment engagement and viral suppression among sexual and gender minority youth in Nigeria
调整和测试同伴导航和移动医疗干预相结合,以提高尼日利亚性少数群体青年的治疗参与度和病毒抑制能力
  • 批准号:
    10619071
  • 财政年份:
    2023
  • 资助金额:
    $ 46.68万
  • 项目类别:
Developing a regionally representative risk assessment tool to identify men at highest risk of HIV acquisition in sub-Saharan Africa
开发具有区域代表性的风险评估工具,以确定撒哈拉以南非洲地区感染艾滋病毒风险最高的男性
  • 批准号:
    10762645
  • 财政年份:
    2023
  • 资助金额:
    $ 46.68万
  • 项目类别:
Molecular Networks and Deep Learning for Targeted HIV Interventions among PWID
分子网络和深度学习对吸毒者进行针对性的艾滋病毒干预
  • 批准号:
    10469166
  • 财政年份:
    2022
  • 资助金额:
    $ 46.68万
  • 项目类别:
Evaluation of novel tuberculosis LAM assays among people living with HIV and sepsis
HIV 感染者和败血症患者中新型结核病 LAM 检测的评估
  • 批准号:
    10548256
  • 财政年份:
    2022
  • 资助金额:
    $ 46.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了