Mechanism of Endotoxin absorption in alcoholism
酒精中毒时内毒素吸收机制
基本信息
- 批准号:8504885
- 负责人:
- 金额:$ 31.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-05-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcetaldehydeActomyosinAdherens JunctionAlcohol consumptionAlcohol dehydrogenaseAlcoholic Liver DiseasesAlcoholismAlcoholsBiopsyCalciumCell Culture TechniquesClinical ResearchColonComplexDataDevelopmentEndotoxemiaEndotoxinsEnterobacteriaceaeEpidermal Growth FactorEpidermal Growth Factor ReceptorEpithelialEthanolEthanol MetabolismEventFunctional disorderFutureGlutamineGoalsHumanInjuryIntercellular JunctionsIntestinesKnowledgeKupffer CellsLactobacillus plantarumLungMediatingMetabolicMethylationMitogen-Activated Protein KinasesModelingMolecularMucous MembraneMusMyosin Light Chain KinaseOutcome StudyPTPN1 genePancreasPancreatic DiseasesPathogenesisPermeabilityPhosphorylationPhosphotransferasesPlasmaPlayPreventionProbioticsProcessProtein DephosphorylationProtein Tyrosine PhosphataseProtein phosphataseProteinsResearchRoleSRC geneSiteTestingTight JunctionsTissuesTyrosine Phosphorylationabsorptionalcohol effectaldehyde dehydrogenasesbasecitrate carrierclaudin 4feedinggastrointestinal epitheliumgut microfloraintestinal epitheliumliver injuryloss of functionnovel therapeuticsoccludinpreventpublic health relevanceresearch studyresponsesrc-Family Kinases
项目摘要
DESCRIPTION (provided by applicant): Evidence from clinical and experimental studies indicates that elevated intestinal permeability to endotoxins and the resulting endotoxemia play a crucial role in the pathogenesis of alcoholic liver disease. Our studies conducted so far have shown that acetaldehyde, the metabolic product of ethanol, disrupts the intestinal epithelial barrier function and increases the permeability to endotoxins. The mechanism of this acetaldehyde-induced disruption of epithelial barrier function involves inhibition of a protein tyrosine phosphatase, PTP1B, tyrosine phosphorylation of junctional proteins, disruption of the interactions among the junctional proteins (that determine the barrier function), and loss of integrity of the junctional complexes. Furthermore, our studies demonstrated that epidermal growth factor (EGF) and L-glutamine prevent acetaldehyde-mediated increase in permeability to endotoxins by a PLC?, PKC?, PKC?I and calcium-dependent mechanism. Our preliminary studies indicate that acetaldehyde induces translocation of PP2A leading to dephosphorylation of occludin and claudin-4, ethanol amplifies the effect of acetaldehyde by a Src kinase and MLCK-dependent mechanism and that probiotic, L. plantarum prevents acetaldehyde- induced barrier disruption. On the basis of these results it is further hypothesized that: a) ethanol metabolism and gut microflora play crucial roles in ethanol-induced intestinal barrier dysfunction, b) PP2A-dependent dephosphorylation of occludin and Cldn-4 is involved in acetaldehyde-induced disruption of intestinal barrier function, c) ethanol synergizes acetaldehyde-induced barrier disruption by c-Src-mediated MLCK activation, and d) probiotic, L. plantarum, prevents ethanol and acetaldehyde-induced disruption of barrier function by a EGF receptor, p38MAPK and Rac1- dependent mechanism. Using a cell culture model of the intestinal epithelium and human colonic biopsies we will determine that: 1) ADH1B and ALDH2 modulate ethanol-induced disruption of TJs and barrier function. 2) ALDH2 deficient mice are more sensitive to ethanol-induced barrier dysfunction. 3) Gut microflora play a role in ethanol metabolism and ethanol-induced disruption of TJs. 4) Acetaldehyde-induced PP2A methylation and translocation leads to dephosphorylation of TJ proteins and disruption of barrier function. 5) Dephosphorylation of occludin and Cldn-4 on specific Ser and Thr residues is associated with acetaldehyde-induced disruption of TJs and barrier dysfunction. 6) PP2A translocation plays a role in acetaldehyde-induced TJ disruption in mouse intestine. 7) Ethanol-mediated c-Src activation synergizes acetaldehyde-induced TJ disruption. 8) MLCK mediates synergization of acetaldehyde-induced TJ disruption by ethanol. 9) Ethanol sensitizes mouse colon for acetaldehyde-induced barrier dysfunction by a c-Src and MLCK- dependent mechanism. 10) L. plantarum prevents ethanol/acetaldehyde-induced disruption of junctions by p38MAPK-dependent mechanism. 11) Rac1 activation and stabilization of actomyosin ring are involved in the L. plantarum-mediated prevention of ethanol/acetaldehyde-induced tight junction disruption. 12) L. plantarum ameliorates ethanol/acetaldehyde-induced intestinal barrier dysfunction in mice and human colonic mucosa. The outcome of these studies has a direct relevance to our understanding of the pathogenesis of alcoholic liver and pancreatic diseases, and has the potential to contribute to the future development of new therapeutic strategies.
PUBLIC HEALTH RELEVANCE: On the basis of our research during the past several years we hypothesized that ethanol metabolism by gut microflora into acetaldehyde disrupts intestinal epithelial barrier function by inducing phosphorylation of proteins of intercellular junctions, and the probiotic L. plantarum prevents such cellular damage by acetaldehyde. We propose to conduct studies to uncover the cellular and molecular mechanisms involved in these processes and determine the protective role of a probiotic in alleviating the alcohol- induced tissue injury. The outcome of these studies is expected to provide knowledge to develop new therapies in the treatment of alcoholic liver disease and alcohol-induced tissue injury in pancreas and lung.
描述(由申请人提供):临床和实验研究的证据表明,肠道对内毒素的通透性升高以及由此产生的内毒素血症在酒精性肝病的发病机制中发挥着至关重要的作用。迄今为止我们进行的研究表明,乙醇的代谢产物乙醛会破坏肠上皮屏障功能并增加内毒素的渗透性。乙醛诱导的上皮屏障功能破坏的机制涉及抑制蛋白酪氨酸磷酸酶 PTP1B、连接蛋白的酪氨酸磷酸化、破坏连接蛋白之间的相互作用(决定屏障功能)以及丧失上皮屏障的完整性。连接复合体。此外,我们的研究表明,表皮生长因子 (EGF) 和 L-谷氨酰胺通过 PLC?、PKC?、PKC?I 和钙依赖性机制防止乙醛介导的内毒素渗透性增加。我们的初步研究表明,乙醛诱导 PP2A 易位,导致 Occludin 和 Claudin-4 去磷酸化,乙醇通过 Src 激酶和 MLCK 依赖性机制放大乙醛的作用,而益生菌植物乳杆菌可防止乙醛诱导的屏障破坏。基于这些结果,进一步假设:a) 乙醇代谢和肠道微生物群在乙醇诱导的肠道屏障功能障碍中起着至关重要的作用,b) PP2A 依赖性的 occludin 和 Cldn-4 去磷酸化参与乙醛诱导的肠道屏障功能破坏。肠道屏障功能,c) 乙醇通过 c-Src 介导的 MLCK 激活来协同乙醛诱导的屏障破坏,d) 益生菌植物乳杆菌可预防乙醇和乙醛诱导的屏障破坏EGF 受体、p38MAPK 和 Rac1 依赖性机制破坏屏障功能。使用肠上皮细胞培养模型和人结肠活检,我们将确定:1) ADH1B 和 ALDH2 调节乙醇诱导的 TJ 和屏障功能破坏。 2) ALDH2 缺陷小鼠对乙醇引起的屏障功能障碍更敏感。 3) 肠道菌群在乙醇代谢和乙醇诱导的 TJ 破坏中发挥作用。 4) 乙醛诱导的 PP2A 甲基化和易位导致 TJ 蛋白去磷酸化和屏障功能破坏。 5) occludin 和 Cldn-4 在特定 Ser 和 Thr 残基上的去磷酸化与乙醛诱导的 TJ 破坏和屏障功能障碍有关。 6) PP2A 易位在乙醛诱导的小鼠肠道 TJ 破坏中发挥作用。 7) 乙醇介导的 c-Src 激活可协同乙醛诱导的 TJ 破坏。 8) MLCK 介导乙醇对乙醛诱导的 TJ 破坏的协同作用。 9) 乙醇通过 c-Src 和 MLCK 依赖性机制使小鼠结肠对乙醛诱导的屏障功能障碍敏感。 10) L. plantarum 通过 p38MAPK 依赖性机制防止乙醇/乙醛诱导的连接破坏。 11)Rac1激活和肌动球蛋白环的稳定参与植物乳杆菌介导的乙醇/乙醛诱导的紧密连接破坏的预防。 12) 植物乳杆菌可改善乙醇/乙醛引起的小鼠和人结肠粘膜肠道屏障功能障碍。这些研究的结果与我们对酒精性肝和胰腺疾病发病机制的理解有直接关系,并有可能为未来新治疗策略的发展做出贡献。
公共健康相关性:根据我们过去几年的研究,我们假设肠道微生物群将乙醇代谢为乙醛,通过诱导细胞间连接蛋白磷酸化来破坏肠上皮屏障功能,而益生菌植物乳杆菌通过以下方式防止这种细胞损伤:乙醛。我们建议进行研究,以揭示这些过程中涉及的细胞和分子机制,并确定益生菌在减轻酒精引起的组织损伤中的保护作用。这些研究的结果预计将为开发治疗酒精性肝病以及酒精引起的胰腺和肺组织损伤的新疗法提供知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RADHAKRISHNA RAO其他文献
RADHAKRISHNA RAO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RADHAKRISHNA RAO', 18)}}的其他基金
Defining the Role of Intestinal Calcium Channels in Alcoholic Liver Damage.
定义肠道钙通道在酒精性肝损伤中的作用。
- 批准号:
10390126 - 财政年份:2022
- 资助金额:
$ 31.42万 - 项目类别:
Defining the Role of Intestinal Calcium Channels in Alcoholic Liver Damage.
定义肠道钙通道在酒精性肝损伤中的作用。
- 批准号:
10590757 - 财政年份:2022
- 资助金额:
$ 31.42万 - 项目类别:
Mitigation of GI-ARS by Lactobacillus species
乳酸菌物种缓解 GI-ARS
- 批准号:
10570082 - 财政年份:2022
- 资助金额:
$ 31.42万 - 项目类别:
Impact of Stress on Alcohol-Associated Gut Injury and Systemic Response
压力对酒精相关肠道损伤和全身反应的影响
- 批准号:
10485363 - 财政年份:2016
- 资助金额:
$ 31.42万 - 项目类别:
Intestinal Mucosal Protection by Epidermal Growth Factor
表皮生长因子对肠粘膜的保护
- 批准号:
8994319 - 财政年份:2015
- 资助金额:
$ 31.42万 - 项目类别:
HYPOGLYCEMIA AND HYPERGLYCEMIA IN DEVELOPING BRAIN
大脑发育中的低血糖和高血糖
- 批准号:
8362842 - 财政年份:2011
- 资助金额:
$ 31.42万 - 项目类别:
HYPOGLYCEMIA AND HYPERGLYCEMIA IN DEVELOPING BRAIN
大脑发育中的低血糖和高血糖
- 批准号:
8170447 - 财政年份:2010
- 资助金额:
$ 31.42万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
低频超声场下肉品肌动球蛋白敏感结构域及其构象变化的作用机制
- 批准号:31901612
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Physical, cellular, and molecular control of tissue fission and fusion
组织裂变和融合的物理、细胞和分子控制
- 批准号:
10724005 - 财政年份:2023
- 资助金额:
$ 31.42万 - 项目类别:
The function of TWIST1 acetylation in cell fate and tissue development
TWIST1 乙酰化在细胞命运和组织发育中的作用
- 批准号:
10726986 - 财政年份:2023
- 资助金额:
$ 31.42万 - 项目类别:
Regulation of dynamic actin networks during epithelial morphogenesis
上皮形态发生过程中动态肌动蛋白网络的调节
- 批准号:
10797655 - 财政年份:2022
- 资助金额:
$ 31.42万 - 项目类别:
Elucidating the cytoskeletal mechanics in stem cell niche morphogenesis
阐明干细胞生态位形态发生中的细胞骨架力学
- 批准号:
10729503 - 财政年份:2022
- 资助金额:
$ 31.42万 - 项目类别:
Elucidating the cytoskeletal mechanics in stem cell niche morphogenesis
阐明干细胞生态位形态发生中的细胞骨架力学
- 批准号:
10386101 - 财政年份:2022
- 资助金额:
$ 31.42万 - 项目类别: