Data-Driven Modeling of Signaling Dysregulation in Rheumatoid Arthritis
类风湿关节炎信号传导失调的数据驱动建模
基本信息
- 批准号:8654301
- 负责人:
- 金额:$ 5.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-02 至 2015-04-01
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentAngiogenic FactorAnti-Inflammatory AgentsAnti-inflammatoryArthritisAutomobile DrivingBiologyCell physiologyCellsChronicClinicalComplexComputer AnalysisComputer SimulationCoupledCytokine SignalingDataData SetDexamethasoneDimensionsDiseaseDisease ProgressionDrug TargetingEnvironmentEvaluationEventExperimental ModelsFDA approvedFibroblastsFibrosisFuzzy LogicGenerationsGoalsGrowth FactorHealthHeartHumanImmuneIndividualInflammationInflammatoryIntracellular Signaling ProteinsInvestigationLeast-Squares AnalysisLigandsLinear RegressionsLinkLogicMalignant NeoplasmsMeasurementMetalloproteasesMethodsMethotrexateModalityModelingMolecularMolecular ModelsNormal CellPathologic ProcessesPathway interactionsPatientsPeptide HydrolasesPharmaceutical PreparationsPlayProcessProtein SecretionProteinsRegression AnalysisRheumatoid ArthritisRoleSignal PathwaySignal TransductionSignaling ProteinSiteSourceStimulusTestingTherapeuticTherapeutic IndexTherapeutic InterventionTranslatingValidationWorkadipokinesbasecell typeclinical practicecomputer frameworkcytokinedrug developmentexperimental analysishuman diseaseinhibitor/antagonistinsightmolecular modelingnetwork modelsnovelnovel strategiesnovel therapeuticspredictive modelingresearch studyresponsesignal processingsmall moleculestandard caretherapeutic target
项目摘要
DESCRIPTION (provided by applicant): Human diseases ranging from chronic inflammation to fibrotic disorders and cancer are characterized by dysregulation of cellular signaling pathways, and therapeutics targeting these pathways have shown promise in treating cancer and arthritis. Extensive molecular data is available on individual signaling proteins and on "canonical" pathways, but differences in signaling networks from one cell type to the next are less well understood. Understanding network-level differences associated with diseased-states would substantially advance the development of novel therapeutics. In rheumatoid arthritis (RA), emerging evidence points to the resident fibroblast-like synoviocytes (FLS) as key players in disease progression, but studies of the signaling networks underlying their dysregulation have been limited. This proposal outlines an integrated experimental and computational approach to systematically evaluate primary FLS cells from normal and diseased individuals. I will construct predictive data-driven models of FLS signaling, and link signaling network activity to the resulting cellular response. My specific goals are three-fold: (i) to increase our understanding into how FLS cells have gone awry in disease, (ii) to determine the effects of standard clinical therapeutics for RA on these cells, and (iii) to predict and test new drug targets with the potentil for high therapeutic index. In our preliminary studies we have colected a compendium of ~15,000 data points describing the signaling of FLS from normal or RA primary cells (in culture) in response to diverse environmental stimuli. In Aim 1 I will expand this compendium in multiple dimensions to include investigation of both signaling and cellular responses in eight different primary human FLS cell isolates from normal and RA patient donors. This will provide insights into differences arising from disease-state vs. patient-to-patient variability. I will also directl evaluate the signaling and responses in the presence and absence of clinical therapeutics for RA to identify signaling nodes that persist in the presence of standard treatment modalities. In Aim 2 I will perform multiple data-driven modeling approaches to infer meaningful insights from data collected in our preliminary studies and in Aim 1. Multilinear regression and partial least squares regression analyses will connect activities of specific signaling pathways with cellular responses, and logic-based modeling approaches will be used to generate cell-specific signaling network models for normal and RA FLS, respectively. In Aim 3 I will predict and test novel protein targets for therapeutic intervention in RA. The predictive models generated in Aim 2 will be used for hypothesis testing in silico, and promising hypotheses will be evaluated experimentally. Collectively, this experimental and computational analysis will significantly increase our understanding of rheumatoid arthritis and generate precise molecular models of events likely to underlie disease. Furthermore, it will create an integrated approach that can be used to identify novel sites for therapeutic intervention in a range of other human diseases.
描述(由申请人提供):从慢性炎症到纤维化疾病和癌症的人类疾病的特征是细胞信号传导途径的失调,并且针对这些途径的治疗已显示出治疗癌症和关节炎的前景。关于单个信号蛋白和“规范”途径有大量的分子数据,但一种细胞类型与另一种细胞类型之间信号网络的差异尚不清楚。了解与疾病状态相关的网络水平差异将大大促进新疗法的开发。在类风湿性关节炎(RA)中,新出现的证据表明常驻成纤维细胞样滑膜细胞(FLS)是疾病进展的关键参与者,但对其失调背后的信号网络的研究有限。该提案概述了一种综合的实验和计算方法,用于系统地评估来自正常和患病个体的原代 FLS 细胞。我将构建 FLS 信号传导的预测数据驱动模型,并将信号传导网络活动与产生的细胞反应联系起来。我的具体目标有三个:(i) 加深我们对 FLS 细胞在疾病中如何出错的理解,(ii) 确定 RA 标准临床疗法对这些细胞的影响,以及 (iii) 预测和测试具有高治疗指数潜力的新药物靶点。 在我们的初步研究中,我们收集了约 15,000 个数据点的概要,描述了正常或 RA 原代细胞(培养中)响应不同环境刺激的 FLS 信号传导。在目标 1 中,我将从多个维度扩展此纲要,包括对来自正常和 RA 患者供体的八种不同原代人 FLS 细胞分离物的信号传导和细胞反应进行研究。这将提供对疾病状态与患者之间变异性所产生的差异的见解。我还将直接评估在存在和不存在 RA 临床治疗的情况下的信号传导和反应,以确定在标准治疗方式存在下持续存在的信号传导节点。在目标 2 中,我将执行多种数据驱动的建模方法,从我们的初步研究和目标 1 中收集的数据中推断出有意义的见解。多线性回归和偏最小二乘回归分析将特定信号通路的活动与细胞反应联系起来,并逻辑-基于建模的方法将用于分别生成正常 FLS 和 RA FLS 的细胞特异性信号网络模型。在目标 3 中,我将预测和测试用于 RA 治疗干预的新蛋白质靶点。 Aim 2 中生成的预测模型将用于计算机假设检验,并且将通过实验评估有希望的假设。总的来说,这种实验和计算分析将显着增加我们对类风湿关节炎的理解,并生成可能导致疾病的事件的精确分子模型。此外,它将创建一种综合方法,可用于确定对一系列其他人类疾病进行治疗干预的新位点。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Profiling drugs for rheumatoid arthritis that inhibit synovial fibroblast activation.
- DOI:10.1038/nchembio.2211
- 发表时间:2017-01
- 期刊:
- 影响因子:14.8
- 作者:Jones DS;Jenney AP;Swantek JL;Burke JM;Lauffenburger DA;Sorger PK
- 通讯作者:Sorger PK
Inflammatory but not mitogenic contexts prime synovial fibroblasts for compensatory signaling responses to p38 inhibition.
- DOI:10.1126/scisignal.aal1601
- 发表时间:2018-03-06
- 期刊:
- 影响因子:7.3
- 作者:Jones DS;Jenney AP;Joughin BA;Sorger PK;Lauffenburger DA
- 通讯作者:Lauffenburger DA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DOUGLAS Scott JONES其他文献
DOUGLAS Scott JONES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DOUGLAS Scott JONES', 18)}}的其他基金
Data-Driven Modeling of Signaling Dysregulation in Rheumatoid Arthritis
类风湿关节炎信号传导失调的数据驱动建模
- 批准号:
8468914 - 财政年份:2012
- 资助金额:
$ 5.7万 - 项目类别:
Data-Driven Modeling of Signaling Dysregulation in Rheumatoid Arthritis
类风湿关节炎信号传导失调的数据驱动建模
- 批准号:
8310560 - 财政年份:2012
- 资助金额:
$ 5.7万 - 项目类别:
相似国自然基金
负载类血管生成因子3的可注射水凝胶局部控释体系构建及其对糖尿病下肢缺血病变的治疗作用
- 批准号:51973125
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
AGGF1-SIRT2轴通过调控自噬抑制肾癌发生的分子机制研究
- 批准号:81902860
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
LncRNA-NEAT1通过ceRNA作用促进卵巢癌血管新生的机制研究
- 批准号:81860515
- 批准年份:2018
- 资助金额:34.8 万元
- 项目类别:地区科学基金项目
血管生成因子AGGF1在机体抗DNA病毒天然免疫中的作用及调控机制
- 批准号:81801556
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
IL-21致KC分泌促血管生成因子调控银屑病微血管异常增生的机制研究
- 批准号:81703130
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Data-Driven Modeling of Signaling Dysregulation in Rheumatoid Arthritis
类风湿关节炎信号传导失调的数据驱动建模
- 批准号:
8468914 - 财政年份:2012
- 资助金额:
$ 5.7万 - 项目类别:
Data-Driven Modeling of Signaling Dysregulation in Rheumatoid Arthritis
类风湿关节炎信号传导失调的数据驱动建模
- 批准号:
8310560 - 财政年份:2012
- 资助金额:
$ 5.7万 - 项目类别: