Exploiting Enzyme Plasticity in Drug Discovery: application to glutamate racemase
在药物发现中利用酶可塑性:在谷氨酸消旋酶中的应用
基本信息
- 批准号:8238516
- 负责人:
- 金额:$ 28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAffinityBacillus anthracisBackBehaviorBindingBiological AssayChargeChemicalsChemistryComplexComputer AssistedComputer SimulationDataDevelopmentDiagnosisDissociationDiversity LibraryDockingDrug Delivery SystemsDrug DesignElectrostaticsEnzymesEquilibriumEquipment and supply inventoriesEvaluationFailureFamilyFutureGlutamate racemaseGlutamatesGoalsHeptanesHybridsIsotopesKineticsKnowledgeLeadLibrariesLigandsMammalian CellMethodsMiningModelingMolecular ConformationMotionPharmaceutical PreparationsPhasePhysicsPropertyProtein IsoformsProteinsPublishingRaceReactionResearchResourcesScreening ResultScreening procedureShapesSolutionsSolventsStructureTestingTherapeuticToxic effectanalogantimicrobialantimicrobial drugbasecarbanioncomputational chemistrydesigndrug developmentdrug discoveryenzyme mechanismfallsfeedingflexibilityin vitro Assayinhibitor/antagonistmeetingsmimicrynovelpharmacophoreprogramsracemizationreceptorscaffoldsmall moleculestemvirtual
项目摘要
DESCRIPTION (provided by applicant): We propose to develop a new class of antimicrobial drugs based on the fundamental principles of transition state analysis. Rather than "structure-based" drug design, which is based largely on substrate mimicry, transition-state analysis is "reaction-based" drug design, stemming from a rigorous chemical evaluation of the relevant catalytic chemistry to reveal the enzyme mechanism and the structural changes that stabilize a transition state. Transition state analysis will yield small molecule transition state analogs that closely mimic the transition state structure. For the proposed studies we selected Glutamate Racemase (GR), an increasingly important antimicrobial drug target. GR has been widely validated to be an attractive drug target in numerous pathogenic species. GR-catalyzed racemization is primarily achieved through extensive flexibility, which is information that is largely absent from GR crystal structures. Recent studies by our research group have strongly suggested that a more chemically diverse inhibitor space can be discovered against GR by considering its transition state structure in virtual screening campaigns. These studies have produced a potentially powerful approach for the discovery of diverse inhibitory scaffolds with high ligand efficiency, which provides a solution to the problems of meeting the relatively narrow requirements of antimicrobial drug space. However, the enormous potential of virtual screening methods are significantly hindered by the pronounced failures to relatively rapidly make quality predictions about protein-ligand affinities. This proposal directly fills two significant and related knowledge gaps that hinder discovery of true transition state inhibitors for GR: 1) determination of an experimentally validated transition state structure for GR, and the transition state pharmacophore that leads to the ultra tight binding along the reaction trajectory and 2) how to accurately rank-order hits from virtual screening against a highly flexible protein receptor. The successful completion of the proposed studies will enable the discovery and design of novel high efficiency inhibitory scaffolds for flexible enzyme drug targets, and thus yield transformative results in the field of drug discovery. The specific aims for this proposal are as follows: Aim 1: An integrated computational approach to solve the rank-order problem for a flexible enzyme drug target: the Flexible Enzyme Receptor Method (FERM) for Steered MD (SMD)-Docking. Aim 2: A FERM Challenge: a conformational inventory of GR using a library of conformationally restricted glutamate analogs (the spiro[3.3]heptane family) Aim 3: Elucidation of the Transition State Pharmacophore for GR (B. subtilis RacE and B. anthracis RacE1 and RacE2) via Kinetic Isotope Effects. Aim 4: Bringing it all together: the application of FERM-SMD Docking against the GR transition state pharmacophore and ground state ensembles.
PUBLIC HEALTH RELEVANCE: There are enormous opportunities to discover novel high potency drugs against enzyme targets by fully capturing the dynamic changes that occur in the enzyme receptor, which are related to their intrinsic ultra-tight binding to reaction intermediates. The key challenges are related to accurately capturing both small and large scale protein motions, which are not readily available from structural data, and also accurate representation of the behavior of electrostatics at the protein solvent interface. The current proposal describes a method that rapidly captures and integrates the missing information, using both experimental and computational approaches, which will eliminate the many false positives that lead to inaccurate predictions, and facilitate the discovery of novel and potent small molecule therapeutics.
描述(由申请人提供):我们建议基于过渡态分析的基本原理开发一类新型抗菌药物。与主要基于底物模拟的“基于结构”的药物设计不同,过渡态分析是“基于反应”的药物设计,源于对相关催化化学的严格化学评估,以揭示酶机制和结构稳定过渡状态的变化。过渡态分析将产生密切模仿过渡态结构的小分子过渡态类似物。对于拟议的研究,我们选择了谷氨酸消旋酶(GR),这是一个日益重要的抗菌药物靶点。 GR 已被广泛证实是众多致病物种中有吸引力的药物靶点。 GR 催化的外消旋化主要是通过广泛的灵活性来实现的,而 GR 晶体结构中基本上不存在这种信息。我们研究小组最近的研究强烈表明,通过在虚拟筛选活动中考虑 GR 的过渡态结构,可以发现化学上更加多样化的抑制剂空间。这些研究为发现具有高配体效率的多种抑制支架提供了一种潜在的强大方法,为满足抗菌药物空间相对狭窄的要求的问题提供了解决方案。然而,虚拟筛选方法的巨大潜力因明显无法相对快速地对蛋白质-配体亲和力进行质量预测而受到严重阻碍。该提案直接填补了阻碍发现真正的 GR 过渡态抑制剂的两个重要且相关的知识空白:1)确定经过实验验证的 GR 过渡态结构,以及导致沿反应轨迹超紧密结合的过渡态药效团2) 如何对高度灵活的蛋白质受体的虚拟筛选中的命中结果进行准确排序。该研究的成功完成将有助于发现和设计用于灵活酶药物靶标的新型高效抑制支架,从而在药物发现领域产生变革性成果。该提案的具体目标如下: 目标 1:一种解决灵活酶药物靶标排序问题的集成计算方法:用于转向 MD (SMD) 对接的灵活酶受体方法 (FERM)。目标 2:FERM 挑战:使用构象限制性谷氨酸类似物(螺[3.3]庚烷家族)文库对 GR 进行构象库存 目标 3:阐明 GR 的过渡态药效团(枯草芽孢杆菌 RacE 和炭疽芽孢杆菌 RacE1)和 RacE2)通过动力学同位素效应。目标 4:将所有内容结合在一起:FERM-SMD 对接针对 GR 过渡态药效团和基态集合的应用。
公共健康相关性:通过充分捕捉酶受体中发生的动态变化,有巨大的机会发现针对酶靶标的新型高效药物,这些变化与其与反应中间体固有的超紧密结合有关。关键的挑战涉及准确捕获小规模和大规模的蛋白质运动(这些运动很难从结构数据中获得),以及准确表示蛋白质溶剂界面的静电行为。目前的提案描述了一种使用实验和计算方法快速捕获和整合缺失信息的方法,这将消除导致不准确预测的许多误报,并促进新型有效的小分子疗法的发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Ashley Spies其他文献
Michael Ashley Spies的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Ashley Spies', 18)}}的其他基金
Dialing down caspase-7 through allosteric control: An integrated approach
通过变构控制降低 caspase-7:一种综合方法
- 批准号:
10439889 - 财政年份:2020
- 资助金额:
$ 28万 - 项目类别:
Dialing down caspase-7 through allosteric control: An integrated approach
通过变构控制降低 caspase-7:一种综合方法
- 批准号:
10259744 - 财政年份:2020
- 资助金额:
$ 28万 - 项目类别:
Dialing down caspase-7 through allosteric control: An integrated approach
通过变构控制降低 caspase-7:一种综合方法
- 批准号:
10649449 - 财政年份:2020
- 资助金额:
$ 28万 - 项目类别:
Dialing down caspase-7 through allosteric control: An integrated approach
通过变构控制降低 caspase-7:一种综合方法
- 批准号:
10027338 - 财政年份:2020
- 资助金额:
$ 28万 - 项目类别:
Exploiting Enzyme Plasticity in Drug Discovery: application to glutamate racemase
在药物发现中利用酶可塑性:在谷氨酸消旋酶中的应用
- 批准号:
9381976 - 财政年份:2012
- 资助金额:
$ 28万 - 项目类别:
Exploiting Enzyme Plasticity in Drug Discovery: application to glutamate racemase
在药物发现中利用酶可塑性:在谷氨酸消旋酶中的应用
- 批准号:
8730183 - 财政年份:2012
- 资助金额:
$ 28万 - 项目类别:
Exploiting Enzyme Plasticity in Drug Discovery: application to glutamate racemase
在药物发现中利用酶可塑性:在谷氨酸消旋酶中的应用
- 批准号:
8534789 - 财政年份:2012
- 资助金额:
$ 28万 - 项目类别:
Exploiting Enzyme Plasticity in Drug Discovery: application to glutamate racemase
在药物发现中利用酶可塑性:在谷氨酸消旋酶中的应用
- 批准号:
9134161 - 财政年份:2012
- 资助金额:
$ 28万 - 项目类别:
Determination of the Biological Roles and Chemical Mechanisms of the Glutamate Ra
谷氨酸 Ra 的生物学作用和化学机制的测定
- 批准号:
7882479 - 财政年份:2009
- 资助金额:
$ 28万 - 项目类别:
Determination of the Biological Roles and Chemical Mechanisms of the Glutamate Ra
谷氨酸 Ra 的生物学作用和化学机制的测定
- 批准号:
7740323 - 财政年份:2009
- 资助金额:
$ 28万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Multiscale Modeling of B. Anthracis Surface Layer Assembly and Depolymerization by Nanobodies
纳米抗体对炭疽杆菌表面层组装和解聚的多尺度建模
- 批准号:
10615187 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别:
Multiscale Modeling of B. Anthracis Surface Layer Assembly and Depolymerization by Nanobodies
纳米抗体对炭疽杆菌表面层组装和解聚的多尺度建模
- 批准号:
10432488 - 财政年份:2022
- 资助金额:
$ 28万 - 项目类别:
Exploiting Enzyme Plasticity in Drug Discovery: application to glutamate racemase
在药物发现中利用酶可塑性:在谷氨酸消旋酶中的应用
- 批准号:
8730183 - 财政年份:2012
- 资助金额:
$ 28万 - 项目类别:
Exploiting Enzyme Plasticity in Drug Discovery: application to glutamate racemase
在药物发现中利用酶可塑性:在谷氨酸消旋酶中的应用
- 批准号:
8534789 - 财政年份:2012
- 资助金额:
$ 28万 - 项目类别:
Exploiting Enzyme Plasticity in Drug Discovery: application to glutamate racemase
在药物发现中利用酶可塑性:在谷氨酸消旋酶中的应用
- 批准号:
9134161 - 财政年份:2012
- 资助金额:
$ 28万 - 项目类别: