Novel algorithm for improved contrast enhanced cardiac MRI
改进对比增强心脏 MRI 的新算法
基本信息
- 批准号:8403755
- 负责人:
- 金额:$ 18.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-01-01 至 2014-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAlgorithmsBolus InfusionBreathingCardiacCardiologyClinicalDataDatabasesDefectDevelopmentFailureGadoliniumGoalsHealthHeartHeart DiseasesHumanImageImaging problemKineticsLearningMagnetic Resonance ImagingMeasuresMethodsMinorModelingMorphologic artifactsMotionMyocardialMyocardial IschemiaMyocardial perfusionPatientsPerformancePerfusionPeripheral Nerve StimulationPhysicsPublic HealthQualifyingQuantitative EvaluationsRadiology SpecialtyResearchResolutionRiskScanningSchemeSignal TransductionSliceStructureTechniquesTimeValidationVariantWeightbasecompliance behaviorcomputerized data processingdata sharingdata spacedesigngadolinium oxideheart motionimage processingimprovedinnovationnovelreconstructionrespiratory
项目摘要
Project Summary
Myocardial first-pass perfusion and late gadolinium enhancement (LGE) schemes are key
components of most clinical cardiac MRI exams. The limitations of current MRI schemes
often makes it challenging to simultaneously achieve high spatio-temporal resolution,
sufficient spatial coverage, and good image quality in first-pass perfusion MRI, making it
difficult to interpreting the results. Similarly, the large number of breath-holds and their long
duration often makes LGE acquisitions challenging for many patients, resulting in significant
motion artifacts and reduced patient throughput. In this context, there is an immediate clinical
need for a novel dynamic imaging framework that can enable free-breathing acquisitions and
considerably improve spatio-temporal resolution and coverage, without degrading the quality.
The main objective of this proposal is to develop a novel dynamic imaging framework, which
can enable free-breathing cardiac MRI and significantly accelerate it with minimal artifacts.
We recently introduced a novel regularized reconstruction algorithm to significantly
accelerate free-breathing dynamic MRI data. Preliminary validations of the algorithm
demonstrated the ability of the proposed scheme to provide accelerations of up-to eleven
fold with minor artifacts. The main focus of this proposal is to further improve the k-t SLR
scheme and use it to realize high-resolution clinical myocardial perfusion and free-breathing
LGE MRI. The successful completion of the proposed research will provide quantitative
perfusion estimates with a temporal resolution of one heartbeat and spatial resolution of
0.15x0.15x0.8 ccfrom the entire heart, which is a four-fold improvement over current
schemes. Similarly, we expect to considerably improve the patient compliance by relaxing
the breath-holding requirement and reducing the scan time in LGE MRI data. These
developments are quite significant and will considerably advance the state of the art in
contrast-enhanced CMRI. The proposed algorithm is a radical departure from the classical
approaches that rely on x-f space sparsity. In addition, we introduce non-convex spectral
priors and additionally exploit the sparsity of the dynamic images to further improve the data
fidelity and acceleration rate. Thus, the proposed scheme is highly innovative and its impact
is expected to extend beyond the specific applications. Our team is well qualified to perform
the proposed research because of our combined scope and breadth in expertise (including
signal/image processing, MR physics, radiology, and cardiology), in addition to the extensive
preliminary data.
项目概要
心肌首过灌注和晚期钆增强(LGE)方案是关键
大多数临床心脏 MRI 检查的组成部分。当前 MRI 方案的局限性
通常很难同时实现高时空分辨率,
首过灌注 MRI 具有足够的空间覆盖范围和良好的图像质量,使其
难以解释结果。同样,大量的屏气和长时间的屏气
持续时间通常使 LGE 采集对许多患者来说具有挑战性,从而导致显着的
运动伪影和患者吞吐量降低。在这种情况下,立即进行临床
需要一种新颖的动态成像框架,可以实现自由呼吸的采集和
显着提高时空分辨率和覆盖范围,而不会降低质量。
该提案的主要目标是开发一种新颖的动态成像框架,该框架
可以实现自由呼吸心脏 MRI,并以最小的伪影显着加速它。
我们最近引入了一种新颖的正则化重建算法,以显着
加速自由呼吸动态 MRI 数据。算法的初步验证
展示了所提出的方案提供高达 11 倍加速度的能力
折叠有小工件。该提案的主要重点是进一步改进k-t SLR
方案并用其实现高分辨率临床心肌灌注和自由呼吸
LGE 磁共振成像。拟议研究的成功完成将提供定量的结果
灌注估计的时间分辨率为一次心跳,空间分辨率为
来自整个心脏的 0.15x0.15x0.8 cc,比当前提高了四倍
计划。同样,我们希望通过放松来显着提高患者的依从性
屏气要求并减少 LGE MRI 数据的扫描时间。这些
的发展是相当重要的,将大大提高现有技术的水平
对比增强 CMRI。所提出的算法与经典算法截然不同
依赖于 x-f 空间稀疏性的方法。此外,我们还引入了非凸谱
先验并另外利用动态图像的稀疏性来进一步改进数据
保真度和加速率。因此,所提出的方案具有很强的创新性,其影响
预计将扩展到特定应用之外。我们的团队有能力胜任
由于我们综合的专业知识范围和广度(包括
信号/图像处理、MR 物理、放射学和心脏病学),以及广泛的
初步数据。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Blind compressive sensing dynamic MRI.
- DOI:10.1109/tmi.2013.2255133
- 发表时间:2013-06
- 期刊:
- 影响因子:10.6
- 作者:Lingala SG;Jacob M
- 通讯作者:Jacob M
ROBUST NON-LOCAL REGULARIZATION FRAMEWORK FOR MOTION COMPENSATED DYNAMIC IMAGING WITHOUT EXPLICIT MOTION ESTIMATION.
- DOI:10.1109/isbi.2012.6235740
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Yang Z;Jacob M
- 通讯作者:Jacob M
Fat water decomposition using globally optimal surface estimation (GOOSE) algorithm.
- DOI:10.1002/mrm.25193
- 发表时间:2015-03
- 期刊:
- 影响因子:3.3
- 作者:Cui, Chen;Wu, Xiaodong;Newell, John D.;Jacob, Mathews
- 通讯作者:Jacob, Mathews
BLIND COMPRESSED SENSING WITH SPARSE DICTIONARIES FOR ACCELERATED DYNAMIC MRI.
用于加速动态 MRI 的稀疏字典盲压缩感知。
- DOI:10.1109/isbi.2013.6556398
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Lingala,SajanGoud;Jacob,Mathews
- 通讯作者:Jacob,Mathews
Accelerated MRI using iterative non-local shrinkage.
- DOI:10.1109/embc.2014.6943897
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Mohsin YQ;Ongie G;Jacob M
- 通讯作者:Jacob M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mathews Jacob其他文献
Mathews Jacob的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mathews Jacob', 18)}}的其他基金
Model Based Deep Learning Framework for Ultra-High Resolution Multi-Contrast MRI
基于模型的超高分辨率多对比 MRI 深度学习框架
- 批准号:
10534737 - 财政年份:2021
- 资助金额:
$ 18.23万 - 项目类别:
Model Based Deep Learning Framework for Ultra-High Resolution Multi-Contrast MRI
基于模型的超高分辨率多对比 MRI 深度学习框架
- 批准号:
10321658 - 财政年份:2021
- 资助金额:
$ 18.23万 - 项目类别:
Novel Computational Framework for Free-Breathing & Ungated Dynamic MRI
自由呼吸的新颖计算框架
- 批准号:
10583878 - 财政年份:2016
- 资助金额:
$ 18.23万 - 项目类别:
Novel Computational Framework for Free-Breathing & Ungated Dynamic MRI
自由呼吸的新颖计算框架
- 批准号:
9217649 - 财政年份:2016
- 资助金额:
$ 18.23万 - 项目类别:
Novel algorithm for improved contrast enhanced cardiac MRI
改进对比增强心脏 MRI 的新算法
- 批准号:
8243134 - 财政年份:2012
- 资助金额:
$ 18.23万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于非线性模态局部化加速度传感器的自适应混沌控制研究
- 批准号:12302016
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 18.23万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 18.23万 - 项目类别:
Parallel Characterization of Genetic Variants in Chemotherapy-Induced Cardiotoxicity Using iPSCs
使用 iPSC 并行表征化疗引起的心脏毒性中的遗传变异
- 批准号:
10663613 - 财政年份:2023
- 资助金额:
$ 18.23万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 18.23万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 18.23万 - 项目类别: