Plasmonic mapping of ion channel activities in single cells
单细胞离子通道活动的等离子体图谱
基本信息
- 批准号:8281237
- 负责人:
- 金额:$ 18.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgonistBiological ModelsCalciumCell AdhesionCell CycleCell membraneCell physiologyCellsChemistryComputer softwareDendritesDetectionDoseDrug Delivery SystemsDrug ReceptorsElectric ConductivityElectrodesFluorescenceGlassGoalsGoldImageImaging TechniquesIndividualIon ChannelLabelLeadLifeLocationMapsMeasurementMeasuresMembraneMethodsMicroscopyModelingMonitorNeuronsNicotinic ReceptorsOptical MethodsOpticsPatch-Clamp TechniquesPerformancePerfusionPharmaceutical PreparationsPotassiumProcessProtocols documentationRecordsResolutionScreening procedureSignal TransductionSodiumSpatial DistributionSpecificityStructureSurfaceSurface Plasmon ResonanceSystemTechniquesTimebasedrug candidatedrug discoveryelectric impedancefluorescence imaginghigh throughput screeninginsightmillisecondnoveloperationpatch clampplasmonicsreceptorresearch studyresponsesubmicronsuccesstooltraffickingtransmission process
项目摘要
DESCRIPTION (provided by applicant): Studying and monitoring ion channel activities of single cells are critical for understanding many cellular processes, and for screening ion-channel targeted drug candidates. The current gold standard for electrophysiological recording of ion channel opening and closing processes is the patch clamp technique developed over the past several decades. Although it has been responsible for many fundamental discoveries, the patch clamp method uses a micropipette pressed tightly onto a cell membrane surface and detects electrical current associated with the ion channel activities, which is difficult to operate, low throughput (one- patch at a time) and often invasive (damage to the cell). The proposed project will develop a novel optical method to measure cellular electrical conductance changes due to the opening and closing of ions channels in the membrane. The method is based on the conversion of an electrical conductance signal into a plasmonic signal that can be imaged optically without using the micropipette. This paradigm shift approach promises non- invasive mapping of ion channel activities on single cells with millisecond temporal and sub-micron spatial resolution. The setup is fully compatible with the conventional optical, fluorescence and surface plasmon resonance imaging techniques, thus allowing for simultaneous application of multiple imaging techniques to the same cell, and providing comprehensive and complementary information on ion channels. Such an imaging technique is expected to lead to new insights into drug-ion channel receptor interactions and a new tool for high throughput ion-channel targeted drug discovery. The specific aims of the project includes: 1) develop the plasmonic technique for mapping of ion channel activities in living cells; 2) establish the value of the plasmonic techniqu for electrophysiological studies using nicotinic acetylcholine receptors as a model system; 3) demonstrate multifunctional measurements and validate the plasmonic technique with the patch clamp and fluorescence imaging techniques.
PUBLIC HEALTH RELEVANCE: Patch clamp technique is a powerful tool for studying ion channels of cells, but it is difficult to operate, low throughput and often invasive. The present project develops an optical method to measure electrical conductance, making it possible to map ion channel opening and closing activities noninvasively with high spatial and temporal resolution. This unprecedented capability is anticipated to provide new insights into ion channel activities and a new tool for high throughput screening of ion-channel targeted drugs.
描述(由申请人提供):研究和监测单细胞的离子通道活性对于理解许多细胞过程以及筛选离子通道靶向候选药物至关重要。当前离子通道打开和关闭过程的电生理记录的黄金标准是过去几十年发展起来的膜片钳技术。尽管膜片钳方法带来了许多基础性发现,但它使用微量移液器紧紧压在细胞膜表面上并检测与离子通道活动相关的电流,该方法操作困难,通量低(一次一个膜片) )并且经常是侵入性的(对细胞的损害)。拟议的项目将开发一种新颖的光学方法来测量由于膜中离子通道的打开和关闭而引起的细胞电导变化。该方法基于将电导信号转换为等离子体信号,该信号可以在不使用微量移液器的情况下进行光学成像。这种范式转变方法有望以毫秒时间和亚微米空间分辨率对单细胞上的离子通道活动进行非侵入性绘图。该装置与传统的光学、荧光和表面等离子共振成像技术完全兼容,从而允许对同一细胞同时应用多种成像技术,并提供有关离子通道的全面和互补的信息。这种成像技术有望带来对药物离子通道受体相互作用的新见解,并为高通量离子通道靶向药物发现提供新工具。该项目的具体目标包括:1)开发用于绘制活细胞中离子通道活动的等离子体技术; 2) 使用烟碱乙酰胆碱受体作为模型系统,建立等离激元技术在电生理学研究中的价值; 3)展示多功能测量并通过膜片钳和荧光成像技术验证等离子体技术。
公共健康相关性:膜片钳技术是研究细胞离子通道的有力工具,但操作困难、通量低且通常具有侵入性。本项目开发了一种测量电导的光学方法,使得能够以高空间和时间分辨率非侵入性地绘制离子通道的打开和关闭活动。这种前所未有的能力预计将为离子通道活动提供新的见解,并为离子通道靶向药物的高通量筛选提供新工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NONGJIAN TAO其他文献
NONGJIAN TAO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NONGJIAN TAO', 18)}}的其他基金
Measuring small molecule interactions with membrane proteins on single cells via detecting nanometer scale membrane deformations
通过检测纳米级膜变形来测量小分子与单细胞膜蛋白的相互作用
- 批准号:
9365667 - 财政年份:2017
- 资助金额:
$ 18.31万 - 项目类别:
Charge sensitive optical detection for high-throughput study of small molecules
用于小分子高通量研究的电荷敏感光学检测
- 批准号:
9316572 - 财政年份:2016
- 资助金额:
$ 18.31万 - 项目类别:
Charge sensitive optical detection for high-throughput study of small molecules
用于小分子高通量研究的电荷敏感光学检测
- 批准号:
9147498 - 财政年份:2016
- 资助金额:
$ 18.31万 - 项目类别:
A personal exposure and response monitoring system for pediatric asthma study
用于小儿哮喘研究的个人暴露和反应监测系统
- 批准号:
9076677 - 财政年份:2015
- 资助金额:
$ 18.31万 - 项目类别:
Charge sensitive optical detection for high throughput study of small molecules
用于小分子高通量研究的电荷敏感光学检测
- 批准号:
8728790 - 财政年份:2012
- 资助金额:
$ 18.31万 - 项目类别:
Charge sensitive optical detection for high throughput study of small molecules
用于小分子高通量研究的电荷敏感光学检测
- 批准号:
8432736 - 财政年份:2012
- 资助金额:
$ 18.31万 - 项目类别:
Charge sensitive optical detection for high throughput study of small molecules
用于小分子高通量研究的电荷敏感光学检测
- 批准号:
8547801 - 财政年份:2012
- 资助金额:
$ 18.31万 - 项目类别:
Plasmonic mapping of ion channel activities in single cells
单细胞离子通道活动的等离子体图谱
- 批准号:
8451893 - 财政年份:2012
- 资助金额:
$ 18.31万 - 项目类别:
A wireless multi-functional sensor badge for epidemiological studies
用于流行病学研究的无线多功能传感器徽章
- 批准号:
8333970 - 财政年份:2011
- 资助金额:
$ 18.31万 - 项目类别:
A wireless multi-functional sensor badge for epidemiological studies
用于流行病学研究的无线多功能传感器徽章
- 批准号:
8520309 - 财政年份:2011
- 资助金额:
$ 18.31万 - 项目类别:
相似国自然基金
内源激动剂ArA靶向TMEM175蛋白缓解帕金森病症的分子机制研究
- 批准号:32300565
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水体中β2-肾上腺素受体激动剂(PPCPs)间接光降解机理的量子化学与实验研究
- 批准号:22306084
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TRPV4/SKCa信号轴在AMPK激动剂抑制微小动脉舒张作用中的机制研究
- 批准号:82304584
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于纳米铝乳剂和模式识别受体激动剂的复合型佐剂研究
- 批准号:82341043
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 18.31万 - 项目类别:
Investigating the Effects of ADGRB3 Signaling on Incretin-Mediated Insulin Secretion from Pancreatic Beta-Cells
研究 ADGRB3 信号传导对肠促胰素介导的胰腺 β 细胞胰岛素分泌的影响
- 批准号:
10666206 - 财政年份:2023
- 资助金额:
$ 18.31万 - 项目类别:
Novel first-in-class Therapeutics for Rheumatoid Arthritis
类风湿关节炎的一流新疗法
- 批准号:
10696749 - 财政年份:2023
- 资助金额:
$ 18.31万 - 项目类别:
Development of novel PD1 agonist therapeutic strategies for multiple sclerosis
开发多发性硬化症的新型 PD1 激动剂治疗策略
- 批准号:
10574191 - 财政年份:2023
- 资助金额:
$ 18.31万 - 项目类别: