Development of a Surgical and Transcatheter Polymeric Heart Valve
外科和经导管聚合物心脏瓣膜的开发
基本信息
- 批准号:8315236
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAcuteAddressAdultAge-YearsAnimalsAreaArtificial HeartBiological AssayBioprosthesis deviceBloodBusinessesCalcifiedCardiac Surgery proceduresCardiovascular systemChildhoodClinicalCoagulation ProcessCommitDevelopmentDevicesDoppler EchocardiographyDropsEnvironmentExtravasationFDA approvedFailureFamily suidaeFatigueFigs - dietaryHealth Care CostsHeartHeart RateHeart Valve DiseasesHeart ValvesHourImmune responseImplantIndustryInjection of therapeutic agentLaboratory ResearchMarketingMeasuresMechanicsMemoryMethodsModelingMoldsOperative Surgical ProceduresPerforationPhasePlaguePolymersPopulationPositioning AttributeProcessPropertyResistanceResourcesScientistShapesSmall Business Technology Transfer ResearchSolutionsSterilityStressStructureSurfaceSurface PropertiesSystolic PressureTechniquesTestingThrombosisTranslatingTranslationsUnited StatesUniversitiesWaterWorkabsorptionbiocompatible polymercalcificationcommercializationcostheart valve replacementhemodynamicsimplantationimprovedin vivoinnovationmanmaterial fatiguenovelpolyetheretherketonepressureprogramsprototype
项目摘要
DESCRIPTION (provided by applicant): 10.3 million Bioprosthetic heart valves (BHV) have been implanted since 1980 in the United States alone, but the solution for a durable, non-calcifying bioprosthesis still eludes us. High rates of structural failures and rapid calcificationin BHVs, has veered a gradual shift towards the development of polymeric heart valves (PHV). Biocompatible polymers are excellent materials for heart valves for their tunable mechanical properties (for improved durability), tunable surface properties (for reduced calcification), and the ability to program hemocompatibility (for non-thrombogenecity). Few polymeric materials have already been tested for heart valves, yet one that packages the three essential properties of durability, anti-calcific, and non-thrombogenic still remains to be developed. The intellectual merit of this STTR Phase I proposal is to develop a polymeric heart valve using a novel ultra-polymer, polyetheretherketone (PEEK), to fully address the essential properties for cardiovascular applications. This proposal will establish that PEEK may provide an ideal materials solution for artificial heart valves, for both surgical and transcatheter deploy-ability.
The mechanical properties of PEEK are up to an order of magnitude higher than traditional polymers with excellent fatigue resistance, low water absorption, and highly inert structure. PEEK structures can be molded to shape, woven, and/or non-woven to avoid regions of stress concentration (where structural failure of BHV occurs), and are hemocompatible to avoid thrombosis. Furthermore, PEEK can be processed to demonstrate shape memory, which allows its use for transcatheter valve deploy-ability. In this application, we propose the testing of a PEEK heart valve for its hemodynamic ability, mechanical durability, thrombogenicity, and acute in vivo function in a swine model. To develop and translate the PEEK valve for clinical use, a committed academia-industry partnership is established between the heart valve research laboratory at Emory University, and a shape-memory polymer development company, MedShape Solutions Inc. Our team synergizes expertise and resources in heart valve development and testing at Emory University; and polymer innovation, processing and commercialization of FDA-approved polymeric devices at Medshape Solutions Inc.
PUBLIC HEALTH RELEVANCE: The burden of valvular heart disease is significant in the United States, prevalent in 2.5% of the total population (8.75 million) and 13.3% of adults beyond 65 years of age (5.78 million) in 2011. Replacement of the diseased heart valves with man-made mechanical or bioprosthetic valves is a routine cardiac surgical procedure today, yet one which is plagued with high rates of failure due to the need for anti-coagulation therapy with mechanical valves and the rapid degeneration associated with bioprosthetic valves. In this application, we propose the development and testing of a novel polymeric heart valve, prepared from a resilient, highly durable material with exquisite shape memory properties.
描述(由申请人提供):自 1980 年以来,仅在美国就植入了 1030 万个生物假体心脏瓣膜 (BHV),但我们仍然找不到耐用、非钙化生物假体的解决方案。 BHV 的高结构失效率和快速钙化已经逐渐转向聚合物心脏瓣膜 (PHV) 的发展。生物相容性聚合物因其可调节的机械性能(以提高耐用性)、可调节的表面性能(以减少钙化)和调节血液相容性(以实现非血栓形成)而成为心脏瓣膜的优异材料。很少有聚合物材料已经进行过心脏瓣膜测试,但一种兼具耐久性、抗钙化和非血栓形成这三个基本特性的聚合物材料仍有待开发。 STTR 第一阶段提案的智力价值是使用新型超聚合物聚醚醚酮 (PEEK) 开发聚合物心脏瓣膜,以充分满足心血管应用的基本特性。该提案将确定 PEEK 可以为人造心脏瓣膜提供理想的材料解决方案,以实现手术和经导管部署能力。
PEEK 的机械性能比传统聚合物高出一个数量级,具有优异的耐疲劳性、低吸水率和高惰性结构。 PEEK 结构可以模制成型、编织和/或无纺,以避免应力集中区域(发生 BHV 结构失效的区域),并且具有血液相容性以避免血栓形成。此外,PEEK 可以经过加工以展示形状记忆,从而使其能够用于经导管瓣膜展开能力。在此应用中,我们建议在猪模型中测试 PEEK 心脏瓣膜的血流动力学能力、机械耐久性、血栓形成性和急性体内功能。为了开发和转化 PEEK 瓣膜用于临床,埃默里大学心脏瓣膜研究实验室与形状记忆聚合物开发公司 MedShape Solutions Inc. 建立了学术界和工业界的坚定合作伙伴关系。我们的团队整合了心脏领域的专业知识和资源。埃默里大学阀门开发和测试; Medshape Solutions Inc. 负责 FDA 批准的聚合物器械的聚合物创新、加工和商业化。
公共卫生相关性:在美国,瓣膜性心脏病的负担很重,2011 年,其患病率占总人口的 2.5%(875 万),占 65 岁以上成年人的 13.3%(578 万)。带有人造机械或生物瓣膜的心脏瓣膜是当今的常规心脏外科手术,但由于以下原因而受到高失败率的困扰使用机械瓣膜进行抗凝治疗的需要以及与生物瓣膜相关的快速退化。在此应用中,我们建议开发和测试一种新型聚合物心脏瓣膜,该心脏瓣膜由具有精致形状记忆特性的弹性、高度耐用的材料制成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jack Cabell Griffis其他文献
Jack Cabell Griffis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jack Cabell Griffis', 18)}}的其他基金
1. Drug-Eluting Bioresorbable Polymer Scaffolding for Treatment of Aortic Aneurys
1. 用于治疗主动脉瘤的药物洗脱生物可吸收聚合物支架
- 批准号:
8125695 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Drug-Eluting Bioresorbable Polymer Scaffolding for Treatment of Aortic Aneurysms
用于治疗主动脉瘤的药物洗脱生物可吸收聚合物支架
- 批准号:
7745928 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Drug-Eluting Bioresorbable Polymer Scaffolding for Treatment of Aortic Aneurysms
用于治疗主动脉瘤的药物洗脱生物可吸收聚合物支架
- 批准号:
8332880 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
56th Annual Meeting of the Society for Leukocyte Biology
白细胞生物学学会第 56 届年会
- 批准号:
10752090 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Targeting microglial cell iron-handling in Alzheimer’s Disease
靶向阿尔茨海默病中的小胶质细胞铁处理
- 批准号:
10603992 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
FORUM ON MEDICAL AND PUBLIC HEALTH PREPAREDNESS FOR DISASTERS AND EMERGENCIES AND ACTION COLLABORATIVE ON DISASTERS/PUBLIC HEALTH EMERGENCY RESEARCH
灾害和紧急情况医疗和公共卫生防备论坛以及灾害/公共卫生紧急情况研究行动合作
- 批准号:
10937101 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Microphysiological Systems to Study Hypoxic Cardiac Injury
研究缺氧性心脏损伤的微生理系统
- 批准号:
10591258 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Promoting immunity against acute myeloid leukemia through Fc effector-optimized antibody inhibitory of MICA/B shedding
通过 Fc 效应子优化抗体抑制 MICA/B 脱落,增强对急性髓系白血病的免疫力
- 批准号:
10585146 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别: