iPSC-derived Repair-Responsive Fibroblasts to Heal Diabetic Foot Ulcers

iPSC 衍生的修复反应性成纤维细胞可治愈糖尿病足溃疡

基本信息

  • 批准号:
    8373639
  • 负责人:
  • 金额:
    $ 67.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Diabetic foot ulceration (DFU) is a major problem that significantly impairs quality of life of the patient, leads to prolonged hospitalizations and may require major amputation, demonstrating the urgent need to develop next generation treatments for these and other chronic wounds. To fill this critical gap in patient care, novel sources of autologous cells that are more repair-competent are immediately needed. Our long term goal is to develop a therapeutic approach, based on induced pluripotent stem cell (iPSC) technologies, that will reverse DFU fibroblasts from a non-healing to a healing phenotype by treating these cells in situ, directly in the patient's wound without needing to remove and culture them. To lay the groundwork for this, the immediate goal of our project is to greatly improve the wound repair potency of DFU fibroblasts following their reprogramming to iPSC, that will reveal how "epigenetic memory" (patterns of DNA methylation retained from the cell type reprogrammed) can best be exploited to acquire a spectrum of pleiotrophic effects that will trigger wound repair. In light of the emergence of epigenetics as a critical regulator of the "metabolic memory" linked to diabetic cell dysfunction, DFU fibroblasts are likely to be controlled by epigenetic mechanisms (miRNA, histone modification and DNA methylation). As a result, we expect iPSC reprogramming to reset the epigenome and reverse "metabolic memory" to improve repair after iPSC differentiation. The overall objective is to develop new sources of autologous, repair-competent fibroblasts using iPSC technologies that will dramatically improve DFU therapy. Our central hypothesis is that DFU fibroblasts will become repair- competent when reprogrammed to iPSC and subsequently differentiated to a fibroblast lineage by acquiring repair-promoting functions that will be mediated by epigenetic controls. The rationale for our research is based on exciting new preliminary data that has established the augmented healing potential of iPSC-derived fibroblasts (iPDK) and in vivo models of diabetic wound repair developed in our labs that will determine this repair potential. To test this hypothesis, we have developed skills and data that support the feasibility of this approach by establishing that iPSC-derived fibroblasts are more versatile than their parental fibroblasts. We plan to test our central hypothesis by pursuing the following specific AIMS: AIM 1-Identify cellular functions that trigger repair-competency when repair-deficient, DFU fibroblasts are reprogrammed to iPSC and differentiated to fibroblasts, AIM 2-Reveal if the switch to repair-competency is linked to distinct DNA methylation profiles, histone modifications or miRNA signatures that regulate repair functions in iPDK fibroblasts, and AIM 3- Establish repair efficacy of iPSC-derived fibroblasts in two, well-established animal models of diabetes and optimize their delivery to heal diabetic wounds. Ultimately, this knowledge has the potential to transform the care of patients suffering from DFUs and will be widely applicable to many other types of non- healing wounds, as well as to periodontal disease and aging-related diseases. PUBLIC HEALTH RELEVANCE: The proposed research is relevant to public health because the discovery that non-healing cells from diabetic foot ulcers can be reversed to those that can heal these wounds will fundamentally shift the field of wound care to the threshold of novel in situ treatments, directly in the patient's wound. It will also dramatically improve the efficacy of topical, FDA-approved therapies that are currently not effective in most diabetic foot ulcer patients. Thus, the proposed research is relevant to the part of the NIH's mission that pertains to developing fundamental knowledge that will help reduce the burden of diabetes and wound care, and improve treatment of other chronic wounds in a broad range of patients such as the elderly and immune-compromised patients.
描述(由申请人提供):糖尿病足溃疡(DFU)是一个严重问题,会严重损害患者的生活质量,导致住院时间延长,并可能需要大截肢,这表明迫切需要开发针对这些和其他疾病的下一代治疗方法慢性伤口。为了填补患者护理方面的这一关键空白,迫切需要具有更强修复能力的新自体细胞来源。我们的长期目标是开发一种基于诱导多能干细胞 (iPSC) 技术的治疗方法,通过直接在患者伤口中原位治疗这些细胞,将 DFU 成纤维细胞从不愈合表型逆转为愈合表型,而无需去除并培养它们。为了为此奠定基础,我们项目的直接目标是大大提高 DFU 成纤维细胞重编程为 iPSC 后的伤口修复能力,这将揭示“表观遗传记忆”(从重编程的细胞类型中保留的 DNA 甲基化模式)是如何实现的可以最好地利用它来获得一系列多效作用,从而触发伤口修复。 鉴于表观遗传学作为与糖尿病细胞功能障碍相关的“代谢记忆”的关键调节因子,DFU 成纤维细胞很可能受到表观遗传机制(miRNA、组蛋白修饰和 DNA 甲基化)的控制。因此,我们期望 iPSC 重编程能够重置表观基因组并逆转“代谢记忆”,从而改善 iPSC 分化后的修复。总体目标是利用 iPSC 技术开发具有修复能力的自体成纤维细胞的新来源,从而显着改善 DFU 治疗。我们的中心假设是,DFU 成纤维细胞在重编程为 iPSC 时将变得具有修复能力,并随后通过获得由表观遗传控制介导的修复促进功能而分化为成纤维细胞谱系。我们研究的基本原理是基于令人兴奋的新初步数据,这些数据确定了 iPSC 衍生的成纤维细胞 (iPDK) 的增强愈合潜力,以及我们实验室开发的糖尿病伤口修复体内模型,该模型将确定这种修复潜力。为了检验这一假设,我们开发了支持这种方法可行性的技能和数据,确定 iPSC 衍生的成纤维细胞比其亲代成纤维细胞更通用。我们计划通过追求以下具体目标来测试我们的中心假设:AIM 1-识别修复缺陷时触发修复能力的细胞功能,DFU 成纤维细胞被重新编程为 iPSC 并分化为成纤维细胞,AIM 2-揭示是否切换到修复-能力与调节 iPDK 成纤维细胞修复功能的不同 DNA 甲基化谱、组蛋白修饰或 miRNA 特征相关,以及 AIM 3- 建立修复iPSC 衍生的成纤维细胞在两种成熟的糖尿病动物模型中的功效,并优化其递送以治愈糖尿病伤口。最终,这些知识有可能改变 DFU 患者的护理,并将广泛适用于许多其他类型的不愈合伤口,以及牙周病和衰老相关疾病。 公共健康相关性:拟议的研究与公共健康相关,因为糖尿病足溃疡中的不愈合细胞可以逆转为可以治愈这些伤口的细胞这一发现将从根本上将伤口护理领域转向新型原位治疗的门槛,直接在病人的伤口上。也将大幅提升功效 FDA 批准的局部疗法目前对大多数糖尿病足溃疡患者无效。因此,拟议的研究与 NIH 的使命部分相关: 发展基础知识将有助于减轻糖尿病和伤口护理的负担,并改善老年人和免疫功能低下患者等广大患者的其他慢性伤口的治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JONATHAN A GARLICK其他文献

JONATHAN A GARLICK的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JONATHAN A GARLICK', 18)}}的其他基金

iPSC-derived Repair-Responsive Fibroblasts to Heal Diabetic Foot Ulcers
iPSC 衍生的修复反应性成纤维细胞可治愈糖尿病足溃疡
  • 批准号:
    8691803
  • 财政年份:
    2012
  • 资助金额:
    $ 67.88万
  • 项目类别:
iPSC-derived Repair-Responsive Fibroblasts to Heal Diabetic Foot Ulcers
iPSC 衍生的修复反应性成纤维细胞可治愈糖尿病足溃疡
  • 批准号:
    8515407
  • 财政年份:
    2012
  • 资助金额:
    $ 67.88万
  • 项目类别:
Bioengineered Oral Mucosa from Embryonic Stem Cells for Regenerative Medicine
用于再生医学的胚胎干细胞生物工程口腔粘膜
  • 批准号:
    7904359
  • 财政年份:
    2009
  • 资助金额:
    $ 67.88万
  • 项目类别:
Bioengineered Oral Mucosa from Embryonic Stem Cells for Regenerative Medicine
用于再生医学的胚胎干细胞生物工程口腔粘膜
  • 批准号:
    7351788
  • 财政年份:
    2007
  • 资助金额:
    $ 67.88万
  • 项目类别:
Bioengineered Oral Mucosa from Embryonic Stem Cells for Regenerative Medicine
用于再生医学的胚胎干细胞生物工程口腔粘膜
  • 批准号:
    8019019
  • 财政年份:
    2007
  • 资助金额:
    $ 67.88万
  • 项目类别:
Bioengineered Oral Mucosa from Embryonic Stem Cells for Regenerative Medicine
用于再生医学的胚胎干细胞生物工程口腔粘膜
  • 批准号:
    7208166
  • 财政年份:
    2007
  • 资助金额:
    $ 67.88万
  • 项目类别:
Bioengineered Oral Mucosa from Embryonic Stem Cells for Regenerative Medicine
用于再生医学的胚胎干细胞生物工程口腔粘膜
  • 批准号:
    7574467
  • 财政年份:
    2007
  • 资助金额:
    $ 67.88万
  • 项目类别:
Bioengineered Oral Mucosa from Embryonic Stem Cells for Regenerative Medicine
用于再生医学的胚胎干细胞生物工程口腔粘膜
  • 批准号:
    7755039
  • 财政年份:
    2007
  • 资助金额:
    $ 67.88万
  • 项目类别:
PATHWAYS AND MECHANISMS CONTROLLING EARLY ORAL NEOPLASIA
控制早期口腔肿瘤的途径和机制
  • 批准号:
    6634636
  • 财政年份:
    1995
  • 资助金额:
    $ 67.88万
  • 项目类别:
PATHWAYS AND MECHANISMS CONTROLLING EARLY ORAL NEOPLASIA
控制早期口腔肿瘤的途径和机制
  • 批准号:
    6844773
  • 财政年份:
    1995
  • 资助金额:
    $ 67.88万
  • 项目类别:

相似国自然基金

HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
  • 批准号:
    82301231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
  • 批准号:
    82301190
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
  • 批准号:
    52375281
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
  • 批准号:
    82301213
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
叶黄素调控脂代谢紊乱所致年龄相关性黄斑病变的血-视网膜屏障损伤机制研究
  • 批准号:
    82373570
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
  • 批准号:
    10678789
  • 财政年份:
    2023
  • 资助金额:
    $ 67.88万
  • 项目类别:
Rehabilitation & Engineering Center for Optimizing Veteran Engagement & Reintegration (RECOVER)
复原
  • 批准号:
    10762205
  • 财政年份:
    2023
  • 资助金额:
    $ 67.88万
  • 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
  • 批准号:
    10730284
  • 财政年份:
    2023
  • 资助金额:
    $ 67.88万
  • 项目类别:
Diagnostic and treatment landscape of pyoderma gangrenosum
坏疽性脓皮病的诊治现状
  • 批准号:
    10732688
  • 财政年份:
    2023
  • 资助金额:
    $ 67.88万
  • 项目类别:
What Activates Type 2 diabetes in Children (WATCH)
是什么引发了儿童 2 型糖尿病(观看)
  • 批准号:
    10582468
  • 财政年份:
    2023
  • 资助金额:
    $ 67.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了