Chemical Protein Glycosylation
化学蛋白质糖基化
基本信息
- 批准号:8209040
- 负责人:
- 金额:$ 32.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-01-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdsorptionAdverse effectsAirApplications GrantsBindingBiochemicalBiologicalBlood capillariesCharacteristicsChemicalsComputing MethodologiesDataData AggregationDevelopmentDevicesDextransDifferential Scanning CalorimetryDisaccharidesDrug FormulationsElectrophoresisEncapsulatedEnvironmentEnzyme KineticsEnzyme StabilityEnzymesEquipmentEventExposure toFluorescence SpectroscopyGasesGlycoconjugatesGoalsHumidityHydrophobicityImmuneInfusion PumpsInfusion proceduresInsulinKineticsKnowledgeLightLiquid substanceLongitudinal StudiesLungMeasurementMeasuresMechanicsMedicalMethodsMicroscopyMicrospheresModelingMolecularMolecular ModelsMonosaccharidesNatureOrganic solvent productPharmacologic SubstancePhasePlasticsPolyestersPolymersPolysaccharidesPowder dose formPreventionProductivityPropertyProtein DynamicsProtein GlycosylationProteinsPumpReactionResearchResidual stateSolidSpectroscopy, Fourier Transform InfraredStressStructural ProteinStructureSurfaceTechniquesTemperatureTestingTherapeuticThermodynamicsTimeWorkbasecapillarychemical stabilitychymotrypsinclinical applicationdesigndextranglycosylationimprovedinsightliquid formulationmolecular dynamicsmolecular modelingnanomaterialsnetwork modelsnew technologynovelpreventprotein aggregateprotein structureprotein structure functionresearch studysolid statetherapeutic proteinthermostability
项目摘要
DESCRIPTION (provided by applicant): This grant application seeks to study the biochemical and biomedical implications of modulating fundamental protein biophysical properties (e.g., structure, dynamics, stability, and function) through chemical glycosylation. The main hypothesis is based on the fact that chemical glycosylation effectively reduces protein structural dynamics thereby altering other relevant protein properties (e.g., enzyme kinetics and thermodynamic stability). The development of this novel technology will allow the exploration of a multitude of fundamental scientific questions related to protein structural dynamics. Since the protein dynamics can be shifted gradually by increasing the glycosylation level, we will be able to determine for the first time how protein structural dynamics influences these other properties. Multiple biophysical properties will be determined as a function of glycosylation and their changes statistically correlated. Additionally, molecular modeling and dynamics simulation techniques will be employed to explore the molecular mechanisms by which glycans achieve such effects. These experiments will thus provide fundamental insights regarding the influence of dynamics on the so-called structure-function and structure-stability relationships in proteins. Furthermore, we will study fundamental aspects regarding the stabilization of proteins by chemical glycosylation within biomedically relevant applications, namely, liquid- and solid-state formulations, sustained release devices, and interactions with bio- and nano-materials (SA2-4). Functional stability parameters (e.g., inactivation, aggregate formation) will be correlated with the innate biophysical properties (e.g., structural dynamics, thermodynamic stability) of the glycoconjugates and with the chemical glycosylation variables (e.g., glycan's size and chemical nature, glycosylation level). Experiments are designed to establish the mechanisms of enhanced functional stability by chemical glycosylation. The direct biomedical relevance of the work thus consists in furthering the understanding of the mechanisms by which protein thermodynamic, kinetic, and colloidal stabilities can be increased within therapeutic applications. The long-term goals of this research consist on furthering the development of chemical glycosylation for the study of protein structural dynamics and for the prevention of protein instabilities (e.g., inactivation, aggregation) during storage and delivery of protein therapeutics. Project Relevance. The clinical applicability of protein therapeutics critically depends on preserving their functional and structural intactness. Increasing protein stability by chemical glycosylation in solid and liquid formulations and upon exposure to interfaces (e.g., plastic tubing, surfaces of medical equipment), is essential to ascertain maximum efficiency of the treatment and preventing adverse side effects (e.g., immune reactions caused by administration of aggregated protein). Our research will provide new strategies to enhance protein thermodynamic and kinetic stability.
描述(由申请人提供):本赠款申请旨在通过化学糖基化调节基本蛋白质生物物理物理特性(例如结构,动力学,稳定性和功能)的生化和生物医学意义。主要假设是基于这样一个事实,即化学糖基化有效地降低了蛋白质结构动力学,从而改变了其他相关的蛋白质特性(例如酶动力学和热力学稳定性)。这项新技术的发展将允许探索与蛋白质结构动力学有关的众多基本科学问题。由于可以通过提高糖基化水平逐渐转移蛋白质动力学,因此我们将能够首次确定蛋白质结构动力学如何影响这些其他特性。多种生物物理特性将根据糖基化的函数确定及其变化在统计上相关。另外,将采用分子建模和动力学模拟技术来探索聚糖实现此类作用的分子机制。因此,这些实验将提供有关动力学对蛋白质中所谓结构功能和结构稳定关系的影响的基本见解。此外,我们将研究有关在生物医学相关的应用中,即液态和固态制剂,持续释放设备以及与生物和纳米材料的相互作用(SA2-4)中的化学糖基化蛋白质稳定的基本方面(SA2-4)。功能稳定性参数(例如,灭活,骨料形成)将与糖缀合物的先天生物物理特性(例如结构动力学,热力学稳定性)以及化学糖基化变量(例如Glycan的大小和化学性质和化学性质,玻璃化度)相关。实验旨在建立通过化学糖基化增强功能稳定性的机制。因此,这项工作的直接生物医学相关性包括进一步了解蛋白质热力学,动力学和胶体稳定性在治疗应用中可以提高的机制。这项研究的长期目标是促进化学糖基化的发展,以研究蛋白质结构动力学以及预防蛋白质疗法期间蛋白质不稳定性(例如,失活,聚集)。项目相关性。蛋白质疗法的临床适用性在很大程度上取决于保留其功能和结构完整性。在固体和液体制剂中以及暴露于界面(例如塑料管,医疗设备表面)中,通过化学糖基化提高蛋白质稳定性对于确定治疗的最大效率和预防不良副作用至关重要(例如,由骨料蛋白质施用引起的免疫反应引起的免疫反应)。我们的研究将提供新的策略来增强蛋白质热力学和动力学稳定性。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Glycosylation improves α-chymotrypsin stability upon encapsulation in poly(lactic-co-glycolic)acid microspheres.
- DOI:10.1016/j.rinphs.2012.08.001
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Flores-Fernández GM;Griebenow K
- 通讯作者:Griebenow K
Stimulus-responsive controlled release system by covalent immobilization of an enzyme into mesoporous silica nanoparticles.
- DOI:10.1021/bc200301a
- 发表时间:2012-04-18
- 期刊:
- 影响因子:4.7
- 作者:Mendez, Jessica;Monteagudo, Alina;Griebenow, Kai
- 通讯作者:Griebenow, Kai
Prevention of benzyl alcohol-induced aggregation of chymotrypsinogen by PEGylation.
通过聚乙二醇化预防苯甲醇诱导的胰凝乳蛋白酶原聚集。
- DOI:10.1111/j.2042-7158.2011.01288.x
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Rodriguez-Martinez,JoseA;Rivera-Rivera,Izarys;Griebenow,Kai
- 通讯作者:Griebenow,Kai
A comparative study of different protein immobilization methods for the construction of an efficient nano-structured lactate oxidase-SWCNT-biosensor.
- DOI:10.1016/j.bios.2014.08.072
- 发表时间:2015-02-15
- 期刊:
- 影响因子:12.6
- 作者:Pagan, Miraida;Suazo, Damaris;del Toro, Nicole;Griebenow, Kai
- 通讯作者:Griebenow, Kai
Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy.
- DOI:10.2165/11530550-000000000-00000
- 发表时间:2010-02-01
- 期刊:
- 影响因子:0
- 作者:Solá RJ;Griebenow K
- 通讯作者:Griebenow K
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAI H GRIEBENOW其他文献
KAI H GRIEBENOW的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAI H GRIEBENOW', 18)}}的其他基金
UPR COBRE: PROTEIN HYDROPHILIZATION: PROT DELIVERY FROM BIOCOMPATIBLE POLYMERS
UPR COBRE:蛋白质亲水化:生物相容性聚合物的蛋白质传递
- 批准号:
7170502 - 财政年份:2005
- 资助金额:
$ 32.32万 - 项目类别:
Stability of Poly(ethylene glycol) Modified Proteins
聚乙二醇修饰蛋白质的稳定性
- 批准号:
6766358 - 财政年份:2004
- 资助金额:
$ 32.32万 - 项目类别:
UPR COBRE: PROTEIN HYDROPHILIZATION: PROT DELIVERY FROM BIOCOMPATIBLE POLYMERS
UPR COBRE:蛋白质亲水化:生物相容性聚合物的蛋白质传递
- 批准号:
6981483 - 财政年份:2004
- 资助金额:
$ 32.32万 - 项目类别:
STRUCTURAL ENCAPSULATION OF MODEL PROTEINS IN BIOPOLYMER
生物聚合物中模型蛋白质的结构封装
- 批准号:
6564518 - 财政年份:2002
- 资助金额:
$ 32.32万 - 项目类别:
STRUCTURAL ENCAPSULATION OF MODEL PROTEINS IN BIOPOLYMER
生物聚合物中模型蛋白质的结构封装
- 批准号:
6631257 - 财政年份:2002
- 资助金额:
$ 32.32万 - 项目类别:
STRUCTURAL ENCAPSULATION OF MODEL PROTEINS IN BIOPOLYMER
生物聚合物中模型蛋白质的结构封装
- 批准号:
6609866 - 财政年份:2002
- 资助金额:
$ 32.32万 - 项目类别:
STRUCTURAL ENCAPSULATION OF MODEL PROTEINS IN BIOPOLYMER
生物聚合物中模型蛋白质的结构封装
- 批准号:
6601190 - 财政年份:2002
- 资助金额:
$ 32.32万 - 项目类别:
相似国自然基金
基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
- 批准号:51009131
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
- 批准号:50178004
- 批准年份:2001
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Project 1: Interactions of ENMs with Lung Lining Fluid and Immune Effector Cells
项目 1:ENM 与肺内膜液和免疫效应细胞的相互作用
- 批准号:
8068436 - 财政年份:2010
- 资助金额:
$ 32.32万 - 项目类别:
Trial of Late SURFactant (TOLSURF) to Prevent BPD - Clinical Coord Ctr
晚期 SURFactant (TOLSURF) 预防 BPD 的试验 - Clinical Coord Ctr
- 批准号:
8119622 - 财政年份:2009
- 资助金额:
$ 32.32万 - 项目类别:
Trial of Late SURFactant (TOLSURF) to Prevent BPD - Clinical Coord Ctr
晚期 SURFactant (TOLSURF) 预防 BPD 的试验 - Clinical Coord Ctr
- 批准号:
7928129 - 财政年份:2009
- 资助金额:
$ 32.32万 - 项目类别: