Interactive Search and Review of Clinical Records with Multi-layered Semantic Ann
使用多层语义安娜对临床记录进行交互式搜索和审查
基本信息
- 批准号:8333306
- 负责人:
- 金额:$ 59.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-30 至 2015-09-29
- 项目状态:已结题
- 来源:
- 关键词:Automated AnnotationClinicalClinical ResearchCommunitiesDataDatabasesDevelopmentEffectivenessElementsFeedbackImageryLeadLeftManualsMedicalMethodsNatural Language ProcessingOutcomePatientsProcessPropertyRadiology SpecialtyReadingRecording of previous eventsRecordsReportingResearchResearch PersonnelRetrievalRetrospective StudiesScienceSemanticsSolutionsStructureSystemTechniquesTechnologyTextTimeTranslatingTranslational ResearchUniversitiesbasecomparative effectivenesscomputer human interactionimprovedindexingnovelpatient populationresearch studysuccess
项目摘要
DESCRIPTION (provided by applicant):
A critical element of translating science into practice is the ability to find patient populations for clinical research. Many studies rely on administrative data for selecting relevant patients for studies of comparative effectiveness, but the limitations of administrative data is well-known. Much of the information critical for clinical research is locked in free-text dictated reports, such as history and physical exams and radiology reports. Data repositories, such as the Medical Archival Retrieval System (MARS) at the University of Pittsburgh, are useful for identifying supersets of patients for clinical research studies through indexed word searches. However, simple text-based queries are also limited in their effectiveness, and researchers are often left reading through hundreds or thousands of reports to filter out false positive cases. Current processes are time-consuming and extraordinarily expensive. They lead to long delays between the development of a testable hypothesis and the ability to share findings with the medical community at large.
A potential solution to this problem is pre-annotating de-identified clinical reports to facilitate more intelligent and sophisticated retrieval and review. Clinical reports are rich in meaning and structure and can be annotated at many different levels using natural language processing technology. It is not clear, however, what types of annotations would be most helpful to a clinical researcher, nor is it clear how to display the annotations to best assist manual review of reports. There is interdependence between the annotation schema used by an NLP system and the user interface for assisting researchers in retrieving data for retrospective studies. In this proposal, we will interactively revise an NLP annotation schema as well as explore various methods for annotation display based on feedback from users reviewing patient data for specific research studies.
We hypothesize that an interactive search application that relies on NLP-annotated clinical text will increase the accuracy and efficiency of finding patients for clinical research studies and will support visualization techniques for viewing the data in a way that improves a researcher's ability to review patient data.
描述(由申请人提供):
将科学转化为实践的一个关键要素是能够找到用于临床研究的患者群体。许多研究依赖行政数据来选择相关患者进行比较有效性研究,但行政数据的局限性是众所周知的。对临床研究至关重要的许多信息都被锁定在自由文本口述报告中,例如病史、体格检查和放射学报告。数据存储库,例如匹兹堡大学的医学档案检索系统 (MARS),可用于通过索引词搜索来识别用于临床研究的患者超集。然而,简单的基于文本的查询的有效性也受到限制,研究人员经常需要阅读数百或数千份报告来过滤掉误报案例。当前的流程非常耗时且极其昂贵。它们导致可检验假设的发展与与整个医学界分享研究结果的能力之间存在长期延迟。
该问题的一个潜在解决方案是预先注释去识别化的临床报告,以促进更智能、更复杂的检索和审查。临床报告具有丰富的含义和结构,可以使用自然语言处理技术在许多不同级别进行注释。然而,尚不清楚什么类型的注释对临床研究人员最有帮助,也不清楚如何显示注释以最好地协助手动审查报告。 NLP 系统使用的注释模式与帮助研究人员检索回顾性研究数据的用户界面之间存在相互依赖。在本提案中,我们将交互式地修改 NLP 注释模式,并根据用户审查特定研究的患者数据的反馈,探索各种注释显示方法。
我们假设,依赖于 NLP 注释的临床文本的交互式搜索应用程序将提高为临床研究寻找患者的准确性和效率,并将支持用于查看数据的可视化技术,从而提高研究人员审查患者数据的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WENDY W. CHAPMAN其他文献
WENDY W. CHAPMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WENDY W. CHAPMAN', 18)}}的其他基金
University of Utah Interdisciplinary Training Program in Computational Approaches to Diabetes and Metabolism Research
犹他大学糖尿病和代谢研究计算方法跨学科培训项目
- 批准号:
9183480 - 财政年份:2016
- 资助金额:
$ 59.24万 - 项目类别:
Interactive Search and Review of Clinical Records with Multi-layered Semantic Ann
使用多层语义安娜对临床记录进行交互式搜索和审查
- 批准号:
8022026 - 财政年份:2011
- 资助金额:
$ 59.24万 - 项目类别:
Interactive Search and Review of Clinical Records with Multi-layered Semantic Ann
使用多层语义安娜对临床记录进行交互式搜索和审查
- 批准号:
8714052 - 财政年份:2011
- 资助金额:
$ 59.24万 - 项目类别:
Annotation, development and evaluation for clinical information extraction
临床信息提取的注释、开发和评估
- 批准号:
8288078 - 财政年份:2010
- 资助金额:
$ 59.24万 - 项目类别:
Annotation, development and evaluation for clinical information extraction (transfer)
临床信息提取(传输)的注释、开发和评估
- 批准号:
8868500 - 财政年份:2010
- 资助金额:
$ 59.24万 - 项目类别:
Annotation, development and evaluation for clinical information extraction
临床信息提取的注释、开发和评估
- 批准号:
8501543 - 财政年份:2010
- 资助金额:
$ 59.24万 - 项目类别:
Annotation, development and evaluation for clinical information extraction
临床信息提取的注释、开发和评估
- 批准号:
8231171 - 财政年份:2010
- 资助金额:
$ 59.24万 - 项目类别:
Annotation, development and evaluation for clinical information extraction
临床信息提取的注释、开发和评估
- 批准号:
8133360 - 财政年份:2010
- 资助金额:
$ 59.24万 - 项目类别:
Annotation, development and evaluation for clinical information extraction
临床信息提取的注释、开发和评估
- 批准号:
7985218 - 财政年份:2010
- 资助金额:
$ 59.24万 - 项目类别:
NLP Foundational Studies & Ontologies for Syndromic Surveillance from ED Reports
NLP基础研究
- 批准号:
7908086 - 财政年份:2009
- 资助金额:
$ 59.24万 - 项目类别:
相似国自然基金
周边与中央视觉拥挤效应的心理物理学与脑机制研究及临床应用
- 批准号:32371097
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
MUC5B/Siglec途径对RA-ILD巨噬细胞胞葬的作用机制及临床价值研究
- 批准号:82302605
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MicroRNA-23a/HMGN2通过染色质重塑调控中性粒细胞抗细菌免疫的作用机制及其临床检测价值研究
- 批准号:82302630
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DDX3Y调控Wnt/β-catenin信号通路在肿瘤免疫治疗疗效中的机制和临床价值研究
- 批准号:82372331
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于先进深度学习模型的面向临床多模态乳腺癌诊断方法研究
- 批准号:62371312
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 59.24万 - 项目类别:
Intraoperative integration of artificial intelligence during cystoscopic surgery
膀胱镜手术中人工智能的术中整合
- 批准号:
10365872 - 财政年份:2022
- 资助金额:
$ 59.24万 - 项目类别:
Intraoperative integration of artificial intelligence during cystoscopic surgery
膀胱镜手术中人工智能的术中整合
- 批准号:
10544344 - 财政年份:2022
- 资助金额:
$ 59.24万 - 项目类别:
Using Machine Learning to find a life saving needle in a haystack of children's emergencies
利用机器学习在儿童紧急情况的大海捞针中找到救生针
- 批准号:
10815094 - 财政年份:2022
- 资助金额:
$ 59.24万 - 项目类别:
Joint learning methods for event and relation extraction from clinical narratives
从临床叙述中提取事件和关系的联合学习方法
- 批准号:
10507223 - 财政年份:2022
- 资助金额:
$ 59.24万 - 项目类别: