Dynamics of Endomembrane Docking and Fusion
内膜对接和融合的动力学
基本信息
- 批准号:8235481
- 负责人:
- 金额:$ 34.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-03-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:Amino AcidsArchitectureBackBiochemicalBiochemical GeneticsBiochemistryBiologicalBiological AssayBoxingBudgetsCellsCellular biologyCoated vesicleComplexCytoplasmDataDockingElectrophysiology (science)Embryonic DevelopmentEndocrineEventEvolutionFundingGlucoseGoalsGolgi ApparatusHomeostasisHormonesImmunityIndividualIntracellular MembranesLifeLipidsLocationLysosomesMass Spectrum AnalysisMediatingMembraneMembrane FusionMethodsModificationMolecularMolecular ChaperonesMonitorMonomeric GTP-Binding ProteinsNeuronsNutrientOperating SystemOptical MethodsOpticsOrganellesPathway interactionsPost-Translational Protein ProcessingProcessProteinsQuality ControlReactionRelative (related person)ReporterRoleRuptureS-nitro-N-acetylpenicillamineSNAP receptorSaccharomycesStudy SectionSystemTelefacsimileTimeTransport VesiclesUniversitiesVacuoleVesicleWashingtonYeastsadvanced systemcofactorgenetic regulatory proteinhigh riskin vivoinnovationisotope incorporationlipid metabolismlysosome membranemillisecondmutantneurotransmissionnew technologynoveloperationprofessorprogramsprotein complexreconstitutionstable isotopetooltrafficking
项目摘要
Intracellular membrane docking and fusion are fundamental processes in cell
biology. They are essential for the operation of the secretory and endocytic
pathways and for neurotransmission, hormone secretion, lipid metabolism and
immunity. Fusion events are usually catalyzed by SNARE proteins that, on native
membranes, act together with an array of chaperones and regulatory proteins
including small G proteins and multisubunit tethering complexes. The yeast vacuole
is the most technically advanced system for understanding the SNARE-mediated
fusion of intracellular organelles. It offers superb in vivo tools, an unsurpassed cell-
free assay of fusion, and a fully reconstituted system that allows Rab-regulated
fusion. In the previous funding cycle we extensively characterized HOPS, a 640 kDa
tethering complex required for vacuole fusion, we delineated new mechanisms that
control the activity of the vacuolar Rab protein Ypt7, we studied interactions
between HOPS and a coat complex, AP-3, and we developed methods that for the
first time allow the capture and study of unambiguous trans-SNARE
holocomplexes. We now propose to combine these advances with innovative new
technologies as well as classical approaches, to obtain an integrated view of the
complex processes leading to pre-fusion complex assembly, and the mechanisms
through which these complexes initiate and regulate fusion. In Specific Aim 1 we
use biochemical and genetic approaches to dissect a newly discovered mechanism of
SNARE complex quality control that operates in vivo, and we explore the
mechanism by which the universal chaperone Secl7 restores fusion activity to
certain defective trans-SNARE complexes. In Aim 2 we use newly developed optical
assays of Rab and SNARE function to probe the dynamics of docking and fusion. In
Aim 3 we use trans-SNARE capture and a new AP-3 mutant to dissect the
heterotypic delivery of Golgi-derived AP-3 vesicles to the lysosomal vacuole.
Box 357350 1959 NE Pacific St Seattle, WA 93195
206.543.1660 fax 206.685.1792 bioc@u,washington.edu http. :deptsyashIngtonedu biowww;
Modified Specific Aims
Our goal is to understand how the complex events of membrane tethering, docking
and fusion are executed and regulated on native organelles. Membrane fusion is one
of the most fundamental processes in cell biology. Fusion and the docking reactions
preceding it are essential for the operation of the secretory and endocytic pathways,
lipid metabolism, neurotransmission, nutrient homeostasis, and immunity. We
build on biological and technical advances achieved during the previous funding
cycle to further explore universal mechanisms of SNARE-mediated docking and to
obtain a coherent understanding of the specific machinery that directs traffic into
lysosomal organelles.
Because the requested funding period for this Project was reduced from 5
years to 4, and because the requested budget over years 1-4 was cut by an average of
31% per year, we are reluctantly compelled to scale back the Specific Aims. We now
omit the original Aim 1 (mass spectrometry of trans-SNARE complexes) due to its
expense and technical complexity, and we eliminate sub-Aim 3C (electrical
recordings from isolated organelles), again for reasons of technical complexity. Both
Aims were identified by the Study Section as high-risk and, relative to the other
Aims, lacking in preliminary data and clear end-points. The Modified Aims are to:
1. Identify mechanisms of SNARE complex quality control that operate in living
cells. We have obtained evidence that SNARE complex assembly is monitored by a
quality control system in vivo. Biochemical and genetic strategies will be used to
understand the mechanisms through which this quality control system operates. We
have also discovered that, through an apparently separate mechanism, the universal
SNARE chaperone Secl7 (a-SNAP) can rescue certain defective trans-SNARE
complexes. Mutational analyses and biochemical assays will be used to clarify the
underlying mechanism of this novel and unexpected activity.
2. Use optical methods to probe the dynamics of docking, SNARE-cofactor
interaction, and fusion. We have developed new optical assays and reporters to
probe docking and fusion. A noninvasive optical assay of Rab activity allows us to
follow Rab activation status in real time during docking and fusion. We have
prepared fluorescent SNAREs that will allow us to simultaneously capture trans
complex assembly intermediates and probe their organization.
3. Discover the molecular requirements for AP-3 vesicle transport to the lysosomal
vacuole. In Saccharomyces, direct traffic from the Golgi to the lysosomal vacuole
requires the AP-3 cargo adaptor complex. Despite enormous efforts in several labs,
only a few of the components specific to this pathway are known. In vivo SNARE
capture, and a new AP-3 mutant that is stuck at the Golgi, will be used to identify
additional components of the AP-3 pathway and to understand the mechanisms
through which they operate.
细胞内膜对接和融合是细胞的基本过程
生物学。它们对于分泌和内吞的运作至关重要
途径和神经传递、激素分泌、脂质代谢和
免疫。融合事件通常由 SNARE 蛋白催化,该蛋白在天然
膜,与一系列伴侣和调节蛋白一起作用
包括小 G 蛋白和多亚基束缚复合物。酵母液泡
是用于理解 SNARE 介导的技术最先进的系统
细胞内细胞器的融合。它提供了卓越的体内工具、无与伦比的细胞-
免费融合检测,以及完全重构的系统,允许 Rab 调节
融合。在上一个资助周期中,我们广泛表征了 HOPS,一种 640 kDa
液泡融合所需的束缚复合物,我们描述了新的机制
控制液泡 Rab 蛋白 Ypt7 的活性,我们研究了相互作用
在 HOPS 和外套复合物 AP-3 之间,我们开发了用于
第一次允许捕获和研究明确的反SNARE
全息复合物。我们现在建议将这些进步与创新的新方法相结合
技术以及经典方法,以获得对
导致预融合复杂组装的复杂过程及其机制
这些复合物通过它启动和调节融合。在具体目标 1 中,我们
使用生化和遗传学方法来剖析新发现的机制
SNARE 在体内运行的复杂质量控制,我们探索
通用伴侣 Secl7 恢复融合活性的机制
某些有缺陷的 trans-SNARE 复合体。在目标 2 中,我们使用新开发的光学
Rab 和 SNARE 检测可探测对接和融合的动态。在
目标 3 我们使用反式 SNARE 捕获和新的 AP-3 突变体来剖析
将高尔基体衍生的 AP-3 囊泡异型递送至溶酶体液泡。
邮政信箱 357350 1959 NE Pacific St 西雅图, WA 93195
206.543.1660 传真 206.685.1792 bioc@u,washington.edu http。 :deptsyashIngtonedu生物www;
修改后的具体目标
我们的目标是了解膜束缚、对接的复杂事件是如何发生的
融合是在天然细胞器上执行和调节的。膜融合是其中之一
细胞生物学中最基本的过程。融合和对接反应
在它之前对于分泌和内吞途径的运作至关重要,
脂质代谢、神经传递、营养稳态和免疫。我们
以上次资助期间取得的生物和技术进步为基础
循环进一步探索 SNARE 介导的对接的通用机制并
对将流量引导至的特定机器有一个连贯的了解
溶酶体细胞器。
由于该项目的资助期限从 5
到第 4 年,并且因为第 1-4 年所请求的预算平均削减了
每年 31%,我们被迫缩减具体目标。我们现在
由于其
费用和技术复杂性,我们消除了子目标 3C(电气
来自孤立细胞器的记录),同样是由于技术复杂性的原因。两个都
研究部门将这些目标确定为高风险目标,并且相对于其他目标
目标,缺乏初步数据和明确的终点。修改后的目标是:
1. 确定在生活中运行的 SNARE 复杂质量控制机制
细胞。我们已经获得证据表明 SNARE 复杂组件是由一个
体内质量控制体系。生化和遗传策略将用于
了解该质量控制体系的运作机制。我们
我们还发现,通过一个明显独立的机制,普遍的
SNARE 伴侣 Secl7 (a-SNAP) 可以挽救某些有缺陷的 trans-SNARE
复合物。突变分析和生化检测将用于阐明
这种新颖且意想不到的活动的潜在机制。
2. 使用光学方法探测对接动力学,SNARE-cofactor
互动、融合。我们开发了新的光学分析方法和报告基因
探针对接和融合。 Rab 活性的非侵入性光学测定使我们能够
在对接和融合过程中实时跟踪Rab激活状态。我们有
制备的荧光 SNARE 将使我们能够同时捕获反式
复杂的组装中间体并探测它们的组织。
3. 发现AP-3囊泡转运至溶酶体的分子要求
液泡。在酵母菌中,从高尔基体到溶酶体液泡的直接交通
需要 AP-3 货物适配器复合体。尽管几个实验室付出了巨大的努力,
只有少数特定于该途径的成分是已知的。体内圈套
捕获,以及卡在高尔基体上的新 AP-3 突变体,将用于识别
AP-3 途径的其他成分并了解其机制
他们通过它运作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexey Jarrell Merz其他文献
Alexey Jarrell Merz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexey Jarrell Merz', 18)}}的其他基金
MOLECULAR BASIS OF PILUS-MEDIATED GONOCOCCAL ADHESION
菌毛介导的淋球菌粘附的分子基础
- 批准号:
10363679 - 财政年份:2021
- 资助金额:
$ 34.17万 - 项目类别:
MECHANISMS OF AP-3 FUNCTION IN VESICLE FORMATION AND GOLGI MATURATION
AP-3 在囊泡形成和高尔基体成熟中的功能机制
- 批准号:
9815765 - 财政年份:2019
- 资助金额:
$ 34.17万 - 项目类别:
MECHANISMS OF AP-3 FUNCTION IN VESICLE FORMATION AND GOLGI MATURATION
AP-3 在囊泡形成和高尔基体成熟中的功能机制
- 批准号:
10017291 - 财政年份:2019
- 资助金额:
$ 34.17万 - 项目类别:
MECHANISMS OF AP-3 FUNCTION IN VESICLE FORMATION AND GOLGI MATURATION
AP-3 在囊泡形成和高尔基体成熟中的功能机制
- 批准号:
10226217 - 财政年份:2019
- 资助金额:
$ 34.17万 - 项目类别:
MECHANISMS OF AP-3 FUNCTION IN VESICLE FORMATION AND GOLGI MATURATION
AP-3 在囊泡形成和高尔基体成熟中的功能机制
- 批准号:
10456623 - 财政年份:2019
- 资助金额:
$ 34.17万 - 项目类别:
PROTEIN PHOSPHORYLATION IN YEAST VACUOLE FUSION
酵母液泡融合中的蛋白质磷酸化
- 批准号:
8171286 - 财政年份:2010
- 资助金额:
$ 34.17万 - 项目类别:
PROTEIN PHOSPHORYLATION IN YEAST VACUOLE FUSION
酵母液泡融合中的蛋白质磷酸化
- 批准号:
7957800 - 财政年份:2009
- 资助金额:
$ 34.17万 - 项目类别:
PROTEIN INTERACTIONS WITH VACUOLE TARGETING MACHINERY
蛋白质与液泡靶向机制的相互作用
- 批准号:
7957852 - 财政年份:2009
- 资助金额:
$ 34.17万 - 项目类别:
FLUORESCENCE MICROSCOPY OF PROTEINS INVOLVED IN GOLGI-TO-VACUOLE VESICLE TRAFFIC
参与高尔基体到液泡囊泡运输的蛋白质的荧光显微镜
- 批准号:
7723724 - 财政年份:2008
- 资助金额:
$ 34.17万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ELAVL1 role in glioblastoma heterogeneity through intercellular gene transfer mediated by cell fusion and tunneling membrane nanotube formation
ELAVL1通过细胞融合和隧道膜纳米管形成介导的细胞间基因转移在胶质母细胞瘤异质性中的作用
- 批准号:
10658226 - 财政年份:2023
- 资助金额:
$ 34.17万 - 项目类别:
Organization of transcriptional machinery by weak multivalent interactions
通过弱多价相互作用组织转录机制
- 批准号:
10886179 - 财政年份:2022
- 资助金额:
$ 34.17万 - 项目类别:
Organization of transcriptional machinery by weak multivalent interactions
通过弱多价相互作用组织转录机制
- 批准号:
10684132 - 财政年份:2022
- 资助金额:
$ 34.17万 - 项目类别:
The Macropinosome: Uncovering the Molecular Anatomy of an Oncogene-driven Organelle
大胞饮体:揭示癌基因驱动细胞器的分子解剖结构
- 批准号:
10153719 - 财政年份:2020
- 资助金额:
$ 34.17万 - 项目类别:
Regulation of protein synthesis by metabolic signals and the circadian clock
通过代谢信号和生物钟调节蛋白质合成
- 批准号:
10202987 - 财政年份:2018
- 资助金额:
$ 34.17万 - 项目类别: