Protein Design Using Physical Scoring Functions integrated with Site Couplings

使用与位点耦合集成的物理评分函数进行蛋白质设计

基本信息

  • 批准号:
    8320949
  • 负责人:
  • 金额:
    $ 19.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Tremendous progress has been made in computational protein design in the last 10 years. Though most work has focused on redesign of existing proteins to enhance their stability, specificity or new functionality, successful designs of novel protein folds (not naturally occurring) have emerged. However, to make protein design useful in practical applications, many challenges still exist in the design of protein-protein and protein- DNA interface and the design of dynamic properties of proteins, etc. To conquer those challenges, a practical solution is to develop more accurate scoring functions. It has been proved both experimentally and theoretically that intra and intermolecular signaling between distant sites within one or among many proteins plays a significant role in many biological processes, such as signal transmission and allosteric regulation, etc. The main research goal of this R21 grant is to develop new algorithms and strategies to incorporate the site-site couplings into a protein design procedure. Specifically, in Aim 1, we propose to study the site-site couplings and cooperative interactions of a protein or protein system using both the sequence-based and the physics-based approaches. Critical assessment of the existing approaches will be conducted and a novel algorithm will be developed using the residue-residue interaction energies. In Aim 2, the best methods for site-site couplings prediction will be tailored and integrated to physical scoring functions of protein design. To guarantee the success of this research grant, we propose four schemes to incorporate/combine the site-site coupling into a protein design procedure. The first two schemes represent simple combinations of sequence-based and physics-based protein design approaches; on the other hand, the next two schemes represent a more advanced integration of site-site correlations and physical scoring functions. In the last protocol, we propose to develop a novel scheme and software package to conduct protein design using the residue-residue interaction energies as a template. This approach, which is referred to as correlation embedding (CE), is based on a hypothesis that the correlation information is intrinsically encoded in the interaction energy matrix. The success of this sub-aim will have a great impact on rational protein design, as it represents a perfect integration of site-site couplings into a physical scoring function and opens a new avenue to conduct protein design. All the designed promising PDZ proteins will be synthesized and tested in both folding and functional assays.
描述(由申请人提供):过去 10 年,计算蛋白质设计取得了巨大进展。尽管大多数工作都集中在重新设计现有蛋白质以增强其稳定性、特异性或新功能,但新型蛋白质折叠(非自然发生)的成功设计已经出现。然而,为了使蛋白质设计在实际应用中发挥作用,蛋白质-蛋白质、蛋白质-DNA界面的设计以及蛋白质动态特性的设计等方面仍然存在许多挑战。为了克服这些挑战,实际的解决方案是开发更多准确的评分功能。实验和理论上都证明,一种或多种蛋白质之间的远距离位点之间的分子内和分子间信号传导在许多生物过程中发挥着重要作用,例如信号传递和变构调节等。本次R21资助的主要研究目标是开发新的算法和策略,将位点耦合纳入蛋白质设计程序。具体来说,在目标 1 中,我们建议使用基于序列和基于物理的方法来研究蛋白质或蛋白质系统的位点耦合和协作相互作用。将对现有方法进行严格评估,并利用残基-残基相互作用能量开发一种新算法。在目标 2 中,位点耦合预测的最佳方法将被定制并集成到蛋白质设计的物理评分函数中。为了保证这项研究资助的成功,我们提出了四种方案,将位点耦合纳入蛋白质设计程序。前两个方案代表了基于序列和基于物理的蛋白质设计方法的简单组合;另一方面,接下来的两个方案代表了站点间相关性和物理评分功能的更高级的集成。在最后一个协议中,我们建议开发一种新的方案和软件包,以残基-残基相互作用能作为模板进行蛋白质设计。这种方法称为相关嵌入(CE),基于相关信息本质上编码在交互能量矩阵中的假设。该子目标的成功将对合理的蛋白质设计产生巨大影响,因为它代表了位点耦合与物理评分函数的完美整合,并为进行蛋白质设计开辟了新途径。所有设计的有前景的 PDZ 蛋白都将在折叠和功能测定中合成和测试。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ADMET evaluation in drug discovery. 11. PharmacoKinetics Knowledge Base (PKKB): a comprehensive database of pharmacokinetic and toxic properties for drugs.
药物发现中的 ADMET 评估。
  • DOI:
  • 发表时间:
    2012-05-25
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cao, Dongyue;Wang, Junmei;Zhou, Rui;Li, Youyong;Yu, Huidong;Hou, Tingjun
  • 通讯作者:
    Hou, Tingjun
Drug-likeness analysis of traditional Chinese medicines: 1. property distributions of drug-like compounds, non-drug-like compounds and natural compounds from traditional Chinese medicines.
中药类药分析:1.中药类药化合物、非类药化合物和天然化合物的性质分布。
  • DOI:
  • 发表时间:
    2012-11-27
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shen, Mingyun;Tian, Sheng;Li, Youyong;Li, Qian;Xu, Xiaojie;Wang, Junmei;Hou, Tingjun
  • 通讯作者:
    Hou, Tingjun
Drug-likeness analysis of traditional Chinese medicines: 2. Characterization of scaffold architectures for drug-like compounds, non-drug-like compounds, and natural compounds from traditional Chinese medicines.
中药类药分析:2.中药类药化合物、非类药化合物和天然化合物的支架结构表征。
  • DOI:
  • 发表时间:
    2013-01-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tian, Sheng;Li, Youyong;Wang, Junmei;Xu, Xiaojie;Xu, Lei;Wang, Xiaohong;Chen, Lei;Hou, Tingjun
  • 通讯作者:
    Hou, Tingjun
Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches.
中药的药物相似性分析:使用机器学习方法预测药物相似性。
  • DOI:
  • 发表时间:
    2012-10-01
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Tian, Sheng;Wang, Junmei;Li, Youyong;Xu, Xiaojie;Hou, Tingjun
  • 通讯作者:
    Hou, Tingjun
ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage.
药物发现中的 ADMET 评估。
  • DOI:
  • 发表时间:
    2012-04-02
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Wang, Sichao;Li, Youyong;Wang, Junmei;Chen, Lei;Zhang, Liling;Yu, Huidong;Hou, Tingjun
  • 通讯作者:
    Hou, Tingjun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Junmei Wang其他文献

Junmei Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Junmei Wang', 18)}}的其他基金

AI-Powered Biased Ligand Design
人工智能驱动的偏向配体设计
  • 批准号:
    10637910
  • 财政年份:
    2023
  • 资助金额:
    $ 19.88万
  • 项目类别:
New Generation of General AMBER Force Field for Biomedical Research
用于生物医学研究的新一代通用琥珀力场
  • 批准号:
    10709551
  • 财政年份:
    2022
  • 资助金额:
    $ 19.88万
  • 项目类别:
New Generation of General AMBER Force Field for Biomedical Research
用于生物医学研究的新一代通用琥珀力场
  • 批准号:
    10503886
  • 财政年份:
    2022
  • 资助金额:
    $ 19.88万
  • 项目类别:
New Generation of General AMBER Force Field for Biomedical Research
用于生物医学研究的新一代通用琥珀力场
  • 批准号:
    10798829
  • 财政年份:
    2022
  • 资助金额:
    $ 19.88万
  • 项目类别:

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
  • 批准号:
    62306090
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高精度海表反照率遥感算法研究
  • 批准号:
    42376173
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
  • 批准号:
    82371878
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
  • 批准号:
    62371156
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Elucidating Angular Protein Motion using Kinetic Ensemble Refinement
使用动力学系综细化阐明角蛋白运动
  • 批准号:
    10203376
  • 财政年份:
    2021
  • 资助金额:
    $ 19.88万
  • 项目类别:
Ensemble Networks for Allosteric Drug Design
用于变构药物设计的集成网络
  • 批准号:
    10203327
  • 财政年份:
    2018
  • 资助金额:
    $ 19.88万
  • 项目类别:
Allosteric regulation of a viral RNA-dependent RNA polymerase
病毒RNA依赖性RNA聚合酶的变构调节
  • 批准号:
    9060290
  • 财政年份:
    2015
  • 资助金额:
    $ 19.88万
  • 项目类别:
Allosteric regulation of a viral RNA-dependent RNA polymerase
病毒RNA依赖性RNA聚合酶的变构调节
  • 批准号:
    8952493
  • 财政年份:
    2015
  • 资助金额:
    $ 19.88万
  • 项目类别:
A Computational Metabolomics tool (CoMet) for cancer metabolism
用于癌症代谢的计算代谢组学工具 (CoMet)
  • 批准号:
    8285272
  • 财政年份:
    2012
  • 资助金额:
    $ 19.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了