Nanotherapeutics for acute kidney injury
急性肾损伤的纳米疗法
基本信息
- 批准号:8463165
- 负责人:
- 金额:$ 22.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-26 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAcuteAcute Renal Failure with Renal Papillary NecrosisAddressAdverse drug effectAdverse effectsAgonistAreaBindingBloodBlood CirculationBlood VesselsBody TemperatureCaliberCell Culture SystemCharacteristicsChronicClinical TreatmentClinical TrialsComplexDataDevelopmentDisadvantagedDisciplineDrug CarriersDrug Delivery SystemsDrug KineticsDrug TargetingDrug effect disorderDyesEducational workshopEffectivenessEncapsulatedEndotheliumEngineeringEpithelialExposure toExtravasationFDA approvedFluorocarbonsFoundationsFrequenciesFutureGasesHalf-LifeHeart RateImmunosuppressive AgentsIn VitroInjuryKidneyLipidsLiposomesLiquid substanceMediatingMembraneMicrobubblesModelingMusNanotechnologyOrganPharmaceutical PreparationsPhasePhysiologic pulsePreventionPropertyPublishingReadingRelapsing-Remitting Multiple SclerosisReperfusion InjuryResearch PersonnelRuptureSpecificitySphingosineStructureSurfaceSystemTamoxifenTechniquesTestingTherapeuticThickTimeTissuesToxic effectTubular formationUltrasonic TherapyUltrasonographyUnited States National Institutes of HealthVascular EndotheliumWild Type Mouseanalogaqueousbasecancer therapycell determinationcell injuryedg-1 Proteinimprovedin vivoindustry partnerinjuredinnovationinterestintravenous administrationmeetingsmembermonolayernanometernanoparticlenanotherapeuticnovelnovel strategiesparticleperfluoropentanepreclinical studyrenal ischemiaresponsesuccesssymposiumvascular bed
项目摘要
DESCRIPTION (provided by applicant): This is an exploratory multi PI proposal that will merge the unique expertise of two investigators from two different disciplines to apply an innovative approach to address an unmet need, namely, that there are no FDA approved drugs for the prevention and treatment of acute kidney injury (AKI). Low statistical power, poorly timed administration of the drug, and adverse effects have hampered the success of clinical trials. We propose a new approach in the field of AKI using ultrasound (US)-stimulated drug delivery from drug-loaded nanoparticles. Although nanoparticles (liposomes) have already been approved and are in use for cancer therapy, our studies incorporate recent advances in the field of nanotechnology yet to be tested in targeted drug delivery. Current delivery systems use microbubbles that consist of a gas core encapsulated by a shell (several nm thick) with drugs embedded within the membrane or attached to the surface, or drug-loaded liposomes that decorate the surface of microbubbles. During insonation, microbubbles oscillate; higher US intensities destroy the microbubbles, partially releasing the liposome payload. The disadvantage of this drug carrier system is its short circulation time (gas is usually lost from the bubble within minutes following intravenous administration) and incomplete drug release. Furthermore, the large size of the complex (micrometers) limits extravasation of the particles beyond the vascular bed. We propose to develop a novel drug carrier system (shiftosome) that is based on the combination of two carrier approaches, i.e. liposome nanoparticles loaded with phase-shift nanoparticle agents. These studies will use a superheated liquid perfluorocarbon (e.g. perfluoropentane and/or perfluorobutane) filled nanoparticle inside the liposome internal core along with the entrapped drug. We will test the hypothesis that shiftosomes have improved characteristics and can specifically target a novel sphingosine 1 receptor (S1P1) analog to the kidney endothelium to reduce kidney ischemia-reperfusion injury (IRI). Specific Aim 1 will test the hypothesis that the novel drug carrier system, shiftosome, has improved characteristics for ultrasound-triggered drug delivery, and, when loaded with FTY720, can reduce vascular endothelial or tubular epithelial injury in vitro. Specific Aim 2 will test the hypothesis that the S1P agonist, FTY720, carried by the novel drug carrier system is targeted selectively to the kidney to reduce kidney IRI in vivo. At the end of two years, we will have identified: 1) if shiftosomes are safe, effective and selective in targeting to the kidney, and 2) if FTY720, a leading candidate for clinical trials in AKI, can be selectively delivered to the kidney to avoid potential systemic side effects. These studies will provide the foundation for future preclinical studies using a novel carrier approach to treat AKI.
描述(由申请人提供):这是一项探索性的多 PI 提案,它将融合来自两个不同学科的两名研究人员的独特专业知识,应用创新方法来解决未满足的需求,即没有 FDA 批准的药物用于预防以及急性肾损伤(AKI)的治疗。统计功效低、给药时机不佳以及不良反应阻碍了临床试验的成功。我们提出了一种在 AKI 领域的新方法,利用超声 (US) 刺激的载药纳米颗粒进行药物输送。尽管纳米粒子(脂质体)已被批准并用于癌症治疗,但我们的研究结合了纳米技术领域的最新进展,尚未在靶向药物输送中进行测试。目前的递送系统使用微泡,该微泡由被壳(几纳米厚)封装的气体核心组成,药物嵌入膜内或附着在表面,或装饰微泡表面的载药脂质体。在声波作用过程中,微泡会振荡;较高的超声强度会破坏微泡,部分释放脂质体有效负载。这种药物载体系统的缺点是循环时间短(静脉给药后几分钟内气体通常从气泡中消失)和药物释放不完全。此外,复合物的大尺寸(微米)限制了颗粒外渗到血管床之外。我们建议开发一种新型药物载体系统(shiftosome),该系统基于两种载体方法的组合,即负载相移纳米颗粒剂的脂质体纳米颗粒。这些研究将使用过热液体全氟化碳(例如全氟戊烷和/或全氟丁烷)填充脂质体内核内的纳米颗粒以及包埋的药物。我们将测试以下假设:移位体具有改进的特性,并且可以特异性靶向肾内皮的新型鞘氨醇 1 受体 (S1P1) 类似物,以减少肾缺血再灌注损伤 (IRI)。具体目标 1 将检验以下假设:新型药物载体系统,shiftosome,改善了超声触发药物输送的特性,并且当装载 FTY720 时,可以在体外减少血管内皮或肾小管上皮损伤。具体目标2将检验以下假设:新型药物载体系统携带的S1P激动剂FTY720选择性地靶向肾脏以降低体内肾脏IRI。两年后,我们将确定:1) 移位体是否安全、有效且选择性地靶向肾脏,以及 2) FTY720(AKI 临床试验的主要候选药物)是否可以选择性地递送至肾脏以避免潜在的全身副作用。这些研究将为未来使用新型载体方法治疗 AKI 的临床前研究奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEXANDER L KLIBANOV其他文献
ALEXANDER L KLIBANOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEXANDER L KLIBANOV', 18)}}的其他基金
Ultrasound-triggered drug delivery with acoustically active red blood cells
利用声学活性红细胞进行超声触发药物输送
- 批准号:
8739287 - 财政年份:2013
- 资助金额:
$ 22.87万 - 项目类别:
Ultrasound-triggered drug delivery with acoustically active red blood cells
利用声学活性红细胞进行超声触发药物输送
- 批准号:
8637280 - 财政年份:2013
- 资助金额:
$ 22.87万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Refreshable Biosensors for Continuous Renal Function Monitoring
用于连续肾功能监测的可刷新生物传感器
- 批准号:
10057866 - 财政年份:2020
- 资助金额:
$ 22.87万 - 项目类别:
Tailoring ultrasound technology to explore mechanisms of activation of the splenic neuroimmune axis in attenuating acute organ injury.
定制超声技术探索脾神经免疫轴激活减轻急性器官损伤的机制。
- 批准号:
9341636 - 财政年份:2016
- 资助金额:
$ 22.87万 - 项目类别:
Tailoring ultrasound technology to explore mechanisms of activation of the splenic neuroimmune axis in attenuating acute organ injury.
定制超声技术探索脾神经免疫轴激活减轻急性器官损伤的机制。
- 批准号:
9150562 - 财政年份:2015
- 资助金额:
$ 22.87万 - 项目类别:
Tailoring ultrasound technology to explore mechanisms of activation of the splenic neuroimmune axis in attenuating acute organ injury.
定制超声技术探索脾神经免疫轴激活减轻急性器官损伤的机制。
- 批准号:
9054531 - 财政年份:2015
- 资助金额:
$ 22.87万 - 项目类别: