A Prototype Wireless Digital MR Spectrometer on a Single Integrated Circuit
单个集成电路上的原型无线数字磁共振波谱仪
基本信息
- 批准号:8597817
- 负责人:
- 金额:$ 19.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnesthesia proceduresArchitectureBackBrainCalibrationCallbackChildhoodClinicClinicalClinical ProtocolsCommunicationConsumptionCouplingDataDependenceDevelopmentDevicesDiagnosisDiagnosticDimensionsElderlyElectronicsFeedsForeheadFreedomFutureHeadHealthHealth Care CostsHealthcareHealthcare SystemsHeatingHousingHuman ResourcesImageIndividualLeadLeftLesionLinkMagnetic Resonance ImagingMasksMeasurementMeasuresMechanicsMorphologic artifactsMotionMovementNeurologicOpticsPathologyPatientsPediatricsPerformancePhasePhilosophyPhotonsPhysiologic pulsePositioning AttributePositron-Emission TomographyPrintingProcessPublic HealthRF coilReadingResistanceRiskSafetySamplingScanningSedation procedureSignal TransductionSiliconSolutionsSourceStagingStressSubject HeadingsSystemTechniquesTechnologyTimeTissuesTranslationsUpdateValidationWireless TechnologyWorkanalogbasecostdesigndigitalfeedingflexibilityhigh riskimage processingimprovedinnovationmicrochipminiaturizemotor disordernew technologynovel strategiesoperationpatient populationpatient safetyportabilityprototyperadiologistskillstool developmenttransmission processtrendwireless fidelitywireless network
项目摘要
DESCRIPTION (provided by applicant): The final deliverable of this project is a powerful microchip, or system-on-a-chip (SOC), that contains the functionality of a complete digital MR spectrometer and wireless transmitter. The three specific aims present an iterative, three stage strategy for chipset development. With the completion of each specific aim, the deliverables will be fully functional chipsets with decreasing footprint until we reach the dimensions of the final SOC. We begin with a 50x50x20mm prototype on a printed circuit board that will eventually be reduced to a miniature 2x2x1mm complete SOC blueprint. This microchip technology will be the centerpiece of a wireless, digital RF chain that is superior in performance to the traditional wired, analog RF chain, and is a paradigm shift for the entire field of MRI. Integration of this microchip into an RF coil will enable digital processing of the MR signal to be performed directly on the coil, followed by digital wireless signal transmission, thereby improving SNR and removing all mechanical connections between the RF coil and MR scanner. Specifically, we will develop the microchip technology for integration into a miniature RF coil-based "wireless marker", whose position can be tracked inside the MR scanner bore. Motion tracking of the head is performed using three wireless markers that are easily placed on the forehead, which will provide pose information for real-time motion correction of brain MRI. This application fittingly highlights the strengths of the microchip approach (miniature, wireless device), as well as our significant in-house expertise in motion correction. Head motion is still a fundamental problem for brain MRI, which adds to healthcare costs while also reducing diagnostic confidence. A wireless marker based motion correction solution will significantly benefit healthcare by reducing prep/scan time, costs, and stress to patient that are caused by a dependence on anesthesia and repeat scans due to motion. The diagnostic quality of MRI will also be improved, particularly in patient populations who have difficulty keeping still (e.g. pediatrics, elderly). Wireless markers also possess several advantages over alternative techniques, including: (1) improved patient safety by eliminating electrically conducting wires that can cause tissue heating; (2) no additional load is placed on the existing MR receiver hardware since communication occurs within its own wireless network; (3) compatibility with a wide range of clinical scans, as only a short navigator pulse-sequence is needed for position measurement; (4) does not require any cross-calibration routines (e.g. optical camera tracking), since tracking and imaging are performed in the same MR coordinate system; and (5) importantly, a miniature, wireless-marker tracking-device will be easy to use, thereby facilitating
their portability to the high-throughput clinic. Looking beyond motion correction (and the scope of this R21), the powerful chipsets are an enabling technology for wireless, digital communication between ALL RF coils and the MR scanner. The chipset digitizes the MR signal directly on the RF coil, digitally modulates, and wirelessly transmits the digital MR signal. SNR i therefore increased by avoiding resistive losses and coupling due to long coaxial cables. In the case of a multi-channel imaging RF coil, each channel would have a matching set of on-coil microchips that perform all MR spectrometer operations. By performing these operations directly on the RF coil, the MR scanner becomes channel independent, and RF channel upgrades a thing of the past. An array of microchips may be deployed in a massively multi-channel coil, thereby facilitating the trend in MRI towards parallel imaging. Finally, the elimination of cables and large oncoil electronics will result in lighter and easier to handle RF coils. Digital wireless
links in MRI may also benefit from similar technology that is being rapidly advanced in the field of modern mobile telephony. In summary, the powerful chipsets developed here will not only influence motion correction, but also innovate a fully digital and fully wireless MR scanner in the
future. In the current R21, we expect to produce a high-impact motion correction strategy that is, overall, the most comprehensive, robust, and patient friendly solution to date. The technology and preliminary results garnered will then be used for two future R01 proposals. The first R01 will be for clinical validation of an even more refined wireless marker. The second R01 will be to refine and validate a high-fidelity wireless spectrometer IC for imaging RF coils. Another future application would be MR-PET where a small footprint IC spectrometer would eliminate a lot of the current x-ray dense RF electronics, which interacts with 511keV photons and thus perturbs the PET imaging process.
描述(由申请人提供):该项目的最终交付是一个强大的微芯片或芯片上的系统,其中包含完整的数字MR光谱仪和无线发射器的功能。这三个特定的目标提出了芯片组开发的迭代三阶段策略。随着每个特定目标的完成,可交付成果将是功能齐全的芯片组,足迹减少,直到达到最终SOC的尺寸为止。我们从印刷电路板上的50x50x20mm原型开始,该原型最终将简化为微型2x2x1mm完整的SOC蓝图。这种微芯片技术将是无线,数字RF链的核心性能,其性能优于传统的有线模拟RF链,并且是MRI整个领域的范式转移。将此微芯片集成到RF线圈中,将使MR信号的数字处理能够直接在线圈上执行,然后进行数字无线信号传输,从而改善SNR并删除RF线圈和MR Scanner之间的所有机械连接。具体而言,我们将开发微芯片技术,以集成为基于RF线圈的“无线标记”,该标记可以在MR Scanner孔内跟踪其位置。使用三个轻松放置在额头上的无线标记进行头部的运动跟踪,这将提供姿势信息,以实现大脑MRI的实时运动校正。该应用程序合适地突出了微芯片方法的优势(微型,无线设备),以及我们在运动校正方面的重要内部专业知识。头部运动仍然是大脑MRI的基本问题,这增加了医疗费用,同时也降低了诊断信心。基于无线标记的运动校正解决方案将通过减少对患者的准备时间,成本和压力来显着使医疗保健受益,而患者是由于对麻醉的依赖和因运动而引起的重复扫描。 MRI的诊断质量也将得到改善,尤其是在困难保持静止的患者人群(例如儿科,老年人)。无线标记也比替代技术具有多个优点,包括:(1)通过消除可能导致组织加热的电线来提高患者安全性; (2)在现有的MR接收器硬件上没有额外的负载,因为通信发生在其自己的无线网络中; (3)与广泛的临床扫描兼容,因为仅需要短导航器脉冲序列才能进行位置测量; (4)不需要任何交叉校准例程(例如光学摄像机跟踪),因为在同一MR坐标系中进行了跟踪和成像; (5)重要的是,微型,无线标记的跟踪设备将易于使用,从而促进
它们对高通量诊所的可移植性。超越运动校正(以及此R21的范围),功能强大的芯片组是一种用于所有RF线圈和MR Scanner之间无线数字通信的能力技术。芯片组直接将MR信号数字化直接在RF线圈上,数字调节,并无线传输数字MR信号。因此,由于长长的同轴电缆,避免了电阻损失和耦合,SNR I增加了。在多通道成像RF线圈的情况下,每个通道都将具有一组匹配的围栏微芯片,可以执行所有MR光谱仪操作。通过直接在RF线圈上执行这些操作,MR Scanner成为独立的频道,RF频道升级了过去。一系列微芯片可以部署在大量的多通道线圈中,从而促进了MRI趋向于平行成像的趋势。最后,消除电缆和大型Oncoil电子产品将导致更轻,更容易处理RF线圈。数字无线
MRI中的链接也可能受益于现代移动电话领域快速进步的类似技术。总而言之,这里开发的强大芯片组不仅会影响运动校正,还会影响全数字和完全无线的MR Scanner
未来。在当前的R21中,我们预计将产生高影响力的运动校正策略,总体而言,这是迄今为止最全面,最强大和友好的解决方案。然后,获得的技术和初步结果将用于两个未来的R01提案。第一个R01将用于对更精致的无线标记的临床验证。第二个R01将是完善和验证用于成像RF线圈的高保真无线光谱仪IC。将来的另一个应用将是MR-PET,其中较小的足迹IC光谱仪将消除许多当前X射线密集的RF电子设备,该电源与511KeV光子相互作用,从而使PET成像过程变得更加流动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROLAND BAMMER其他文献
ROLAND BAMMER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROLAND BAMMER', 18)}}的其他基金
Cardiac Diffusion Imaging for Heart Transplant Surveillance
用于心脏移植监测的心脏弥散成像
- 批准号:
8650639 - 财政年份:2014
- 资助金额:
$ 19.63万 - 项目类别:
A Prototype Wireless Digital MR Spectrometer on a Single Integrated Circuit
单个集成电路上的无线数字磁共振波谱仪原型
- 批准号:
8710219 - 财政年份:2013
- 资助金额:
$ 19.63万 - 项目类别:
Short Axis EPI for Diffusion Tensor MRI at High Field
用于高场弥散张量 MRI 的短轴 EPI
- 批准号:
7688492 - 财政年份:2008
- 资助金额:
$ 19.63万 - 项目类别:
相似海外基金
Neuroimmune signaling in surgical wound healing and modulation by regional anesthesia
手术伤口愈合中的神经免疫信号传导和区域麻醉的调节
- 批准号:
10711153 - 财政年份:2023
- 资助金额:
$ 19.63万 - 项目类别:
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
- 批准号:
10715925 - 财政年份:2023
- 资助金额:
$ 19.63万 - 项目类别:
Functional mapping of the parabrachial nucleus: from gastrointestinal topography to satiety
臂旁核的功能图谱:从胃肠道地形到饱腹感
- 批准号:
10604684 - 财政年份:2022
- 资助金额:
$ 19.63万 - 项目类别:
Role of orexin/hypocretin circuit in anesthesia and analgesia
食欲素/下丘脑分泌素回路在麻醉和镇痛中的作用
- 批准号:
10651642 - 财政年份:2020
- 资助金额:
$ 19.63万 - 项目类别:
Mitochondrial structure and function in cerebral arteries during diabetes and ischemic stress
糖尿病和缺血应激期间脑动脉的线粒体结构和功能
- 批准号:
10534181 - 财政年份:2020
- 资助金额:
$ 19.63万 - 项目类别: