Optimization of Clear Optically Matched Panoramic Access Channel Technique (COMPACT) for large-scale deep-brain neurophotonic interface
大规模深脑神经光子接口的清晰光学匹配全景访问通道技术(COMPACT)的优化
基本信息
- 批准号:10267684
- 负责人:
- 金额:$ 42.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAddressAdoptedAnimalsAreaBehaviorBenchmarkingBlood capillariesBrainBrain imagingBrain regionCalciumCalcium SignalingCalibrationCellsComplementComplexComputer softwareDevelopmentDiameterElectrodesEngineeringFiberFiber OpticsFreedomGeneticGlassGoalsHeadImageImaging TechniquesLightLiquid substanceLocationMammalsMeasurementMechanicsMethodsMiniaturizationModelingMolecularMusNeuronsNeurosciencesNoiseOperative Surgical ProceduresOpticsPerformancePhotometryProceduresPublicationsRefractive IndicesResolutionSamplingSideSignal TransductionStructureSurfaceSystemTechniquesTechnologyThinnessTissuesTranslatingWorkbrain tissuedesignexperimental studyfabricationimaging modalityimaging probeimaging systemin vivoinnovationlight weightmetermillimeterminiaturizeminiaturized devicemultiphoton microscopyneuralneural circuitoperationoptical fiberoptical imagingoptogeneticssuccesssymposiumtechnology developmenttwo-photonweb site
项目摘要
Optimization of Clear Optically Matched Panoramic Access Channel Technique (COMPACT)
for large-scale deep-brain neurophotonic interface
With the advance of sensitive molecular indicators and actuators, neurophotonics has become a powerful
paradigm for discovering the principles underlying neural circuit functions. However, a major obstacle of
using light to study neurons located deep in the mammalian brain is the limited access depth. Even with the
advance of multiphoton microscopy, the majority of implementation for imaging the mammalian brain is
limited to ~ 1 mm in depth. The majority of the mouse brain still remains inaccessible to cellular resolution
measurement, not to mention the brain of larger mammals. To image deep brain regions, invasive miniature
optical probes are required. One key issue with these optical probes is the tiny tissue access volume which
limits the number of neurons to be imaged and reduces the success rate of experiments.
Towards large-scale deep-brain neurophotonic interface, we have recently developed Clear
Optically Matched Panoramic Access Channel Technique (COMPACT), which can effectively increase the
tissue access volume by ~ three orders of magnitude. To maximize the impact of the COMPACT platform,
we propose to optimize COMPACT in three major areas. First, we will further miniaturize the implementation
of COMPACT. Second, we will enable COMPACT based fiber photometry and optogenetics. For these two
applications, we can further reduce the capillary diameter to 160 μm. Multiple capillaries can be inserted in
the mammalian brain to create the neurophotonic interface “highway” system. This development will
complement the existing paradigm of mesoscale sampling with electrode array probes by providing an
optical version of whole-brain-access high-capacity recording and modulation system. Third, we will develop
head-mounted two-photon COMPACT system for freely moving animal studies.
To benchmark the system performance, we will carry out extensive in vivo measurement of neuronal
structure and activity in the living mouse brain. Specifically, we will quantify and optimize the imaging
resolution, signal-to-noise ratio, and maximum imaging depth outside capillary. Moreover, we will simplify
and automate the operation procedure so that it can be easily adopted by neurobiologists. With the
progress of the technology development, we will also work to broadly disseminate the COMPACT based
technologies. In addition to scientific publication, we will develop a comprehensive website similar to that of
the Miniscope project to include the detailed mechanical and optical design files, system calibration and
alignment routines, surgical procedures, and customized control software. The ultimate goal is to make
COMPACT robust, turn-key, and broadly available to transform how we use light to study mammalian brains.
优化清晰的光学匹配的全景访问通道技术(COMPACT)
用于大尺度的深脑神经界面界面
随着敏感的分子指标和执行器的发展,神经素化学已成为强大的
用于发现神经回路功能的原理的范式。但是,一个主要障碍
使用光来研究位于哺乳动物大脑深处的神经元是有限的通道深度。即使有
多光子显微镜的发展,大多数用于成像哺乳动物大脑的实施是
深度限制为〜1毫米。大多数小鼠大脑仍然无法访问细胞分辨率
测量,更不用说大型哺乳动物的大脑了。为了图像深脑区域,侵入性微型
需要光学问题。这些光学问题的一个关键问题是细小的组织访问量
限制要成像的神经元数量并降低实验的成功率。
倾向于大尺度的深脑神经射流界面,我们最近开发了清晰的
光学匹配的全景访问通道技术(紧凑型)可以有效地增加
组织访问体积约为三个数量级。为了最大化紧凑型平台的影响,
我们建议在三个主要领域优化紧凑型。首先,我们将进一步实施实施
紧凑。其次,我们将启用基于紧凑的光纤光度法和光遗传学。对于这两个
应用,我们可以将毛细管直径进一步降低至160μm。可以将多个毛细血管插入
哺乳动物的大脑创建神经光音界面“高速公路”系统。这种发展将会
通过提供一个电极阵列问题的现有的中尺度抽样范式
全脑访问高容量记录和调制系统的光学版。第三,我们将发展
用于免费移动动物研究的头部安装的两光子紧凑型系统。
为了测试系统性能,我们将进行大量的神经元测量
活小鼠大脑的结构和活动。具体而言,我们将量化和优化成像
分辨率,信噪比和毛细管外部最大成像深度。而且,我们将简化
并自动化操作程序,以便神经生物学家可以轻松采用它。与
技术开发的进步,我们还将致力于广泛传播基于紧凑的
技术。除了科学出版物外,我们还将开发一个类似于
Miniscope项目包括详细的机械和光学设计文件,系统校准和
对齐程序,外科手术程序和定制的控制软件。最终目标是
紧凑的稳健,交钥匙和广泛可用,以改变我们如何使用光研究哺乳动物大脑的方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meng Cui其他文献
Meng Cui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meng Cui', 18)}}的其他基金
Optimization of Calcium and RNA multiplexed activity imaging for highly parallelized evaluation of cell type functions in deep-brain structures
钙和 RNA 多重活性成像的优化,用于高度并行评估深部脑结构中的细胞类型功能
- 批准号:
10401603 - 财政年份:2022
- 资助金额:
$ 42.94万 - 项目类别:
Optical gearbox for high speed neural recording
用于高速神经记录的光学齿轮箱
- 批准号:
10157026 - 财政年份:2021
- 资助金额:
$ 42.94万 - 项目类别:
Optical gearbox for high speed neural recording
用于高速神经记录的光学齿轮箱
- 批准号:
10385852 - 财政年份:2021
- 资助金额:
$ 42.94万 - 项目类别:
Super-resolution deep tissue imaging of dendritic spines
树突棘的超分辨率深层组织成像
- 批准号:
9269018 - 财政年份:2015
- 资助金额:
$ 42.94万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
- 批准号:
10634911 - 财政年份:2023
- 资助金额:
$ 42.94万 - 项目类别:
K+ channel structural dynamics landscape: from selectivity to gating
K 通道结构动力学景观:从选择性到门控
- 批准号:
10663554 - 财政年份:2023
- 资助金额:
$ 42.94万 - 项目类别:
Mechanisms of neural compensation in the retina and dysfunction in congenital stationary night blindness
先天性静止性夜盲症视网膜神经代偿机制及功能障碍
- 批准号:
10678730 - 财政年份:2023
- 资助金额:
$ 42.94万 - 项目类别:
Optimization of Flexible Neural Probe Arrays for Multi-Region Recordings in Rodents and Nonhuman Primates
用于啮齿动物和非人类灵长类动物多区域记录的柔性神经探针阵列的优化
- 批准号:
10401221 - 财政年份:2022
- 资助金额:
$ 42.94万 - 项目类别:
Simultaneous, Cell-Resolved, Bioluminescent Recording From Microcircuits
微电路同步、细胞解析、生物发光记录
- 批准号:
10463819 - 财政年份:2021
- 资助金额:
$ 42.94万 - 项目类别: