Understanding the effect of rurality and social risk factors on barriers to care and surgical outcomes.
了解农村和社会风险因素对护理和手术结果障碍的影响。
基本信息
- 批准号:10431846
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAdministratorAffectAmericanAreaAssessment toolBenchmarkingCaringCommunitiesCommunity SurveysDataData CollectionData SetData SourcesDisparityDistressEducationEducational process of instructingEligibility DeterminationEthnic OriginFailureFeesGoalsHealthHealth Services AccessibilityHealth systemHealthcareHospitalsIndividualInformaticsInpatientsInstitutionInstitutional PracticeLeadLength of StayMachine LearningManuscriptsMeasuresMedicalMedical RecordsMethodologyMethodsMinorityMissionModelingOperative Surgical ProceduresOutcomeOutcome AssessmentPathway interactionsPatientsPeer GroupPerformancePerioperativePersonsPhasePoliciesPopulationPostoperative ComplicationsPostoperative PeriodPovertyProceduresProxyRaceResource AllocationResourcesRiskRisk AdjustmentRisk FactorsRural HealthServicesSocioeconomic StatusSurgical ModelsSurgical complicationSystemTechniquesUnited StatesUnited States Centers for Medicare and Medicaid ServicesUnited States Department of Veterans AffairsVeteransVeterans Health AdministrationVulnerable Populationsbarrier to careburden of illnesscare deliverycare fragmentationcare outcomescomorbiditycostdata warehousedeprivationdesigndiverse dataeconomic disparityeconomic evaluationfrailtyhealth care disparityhealth care service utilizationhealth equityhigh riskhospital performancehospital readmissionimprovedimproved outcomeindexinginnovationlow socioeconomic statusmachine learning methodmachine learning modelmilitary veteranmortalitymultiple data sourcesneighborhood disadvantageoutcome predictionpatient stratificationpaymentpoint of carepoor health outcomepredictive modelingprogramsracial minorityresidencerisk mitigationrural arearuralitysafety netsocialstatisticssurgery outcomesurgical risktrend
项目摘要
Background: The Mission Act provides improved Veteran access to care both within the Veterans
Administration (VA) and community systems. An underlying assumption is that faster care with more choices
results in better care. However, care fragmentation is associated with increased length of stay, readmissions,
and mortality. Postoperative complications and readmissions are higher in minority and low socioeconomic
status (SES) patients. Low SES is also associated with frailty, one of the best predictors of 30-day
postoperative complications and hospital readmissions. Despite having a profound influence on health
outcomes, social risk factors are absent from risk adjustment for VA quality measures, further exacerbating
disparities in minority and low SES populations. This strategy may further constrain resources to care for
vulnerable populations, as many Veterans are economically disadvantaged and potentially adding avoidable
costs to care delivery. Another major issue is care fragmentation. Nevertheless, the impact of non-VA care and
care fragmentation is absent in performance metrics. Our goal is to identify social risk factors and levels of
care fragmentation that affect surgical outcomes to inform VA quality metric policy and institutional
resource allocation. We improve upon current practice by joining surgical outcomes data with 1) VA/Centers
for Medicare & Medicaid Services (CMS) claims data, 2) VA fee-basis files to identify encounters outside of the
VA health system and 3) using more granular proxy social risk factors and neighborhood disadvantage.
Significance/Impact: Our significance is modeling surgical outcomes using social risk factors, rurality, living in
a disadvantaged neighborhood and care fragmentation to identify factors contributing to health care disparities
and to inform VA policy. The impact is to develop quality metrics using social risk factors and care fragmentation.
HSR&D priority areas: Rural Health, Health Equity, Health Care Value and Health Care Informatics.
Innovation: Joining diverse data sources to develop predictive models using both traditional parametric methods
and exploratory machine learning techniques to provide clinicians and administrators with outcomes and
economic analyses necessary to change institutional practices to benefit our most vulnerable Veterans.
Specific Aims:
Aim 1: Identify factors affecting surgical outcomes by assessing the contributions of ethnicity, race, SES, place
of residence and care fragmentation to surgical complications, readmissions and mortality
Hypothesis: Using ethnic/racial minority status, SES, place of residence and care fragmentation will identify
important risk factors for postoperative complications, readmissions, and mortality
Aim 2: Assess the impact of social risk factors and care fragmentation on hospital performance metrics for
readmissions and mortality
Hypothesis: Including social risk factors and care fragmentation in risk adjustment models significantly
changes VA hospital performance rankings with respect to readmissions and mortality
Aim 3: Determine the relationship of place of residence, care fragmentation, SES and minority status to acute
and long-term VA surgical health care utilization to inform VA resource allocation
Hypothesis: Low SES, rurality, care fragmentation and minority status are associated with higher VA resource
utilization
Methodology: Quantitative analyses using traditional parametric and exploratory machine learning techniques
performed on diverse datasets to develop predictive models of surgical outcomes using care fragmentation,
rurality and social risk factors risk adjusted for medical comorbidities and applied to VA quality metrics.
Implementation/Next Steps: Deployment of quality metric models using social risk factors and care
fragmentation within the VA system. Adjusting resource allocation to account for social risk factors.
背景:《任务法》为退伍军人提供了改进的退伍军人访问
管理(VA)和社区系统。一个基本的假设是更快的护理有更多选择
导致更好的护理。但是,护理分裂与住院时间增加,再入院时间增加有关
和死亡率。在少数民族和社会经济低的少数群体中,术后并发症和再入院率更高
状态(SES)患者。低SES也与脆弱有关,这是30天的最佳预测因素之一
术后并发症和医院再入院。尽管对健康有深远的影响
结果,与VA质量措施的风险调整不存在社会风险因素,进一步加剧了
少数民族和低人类种群的差异。该策略可能会进一步限制资源来照顾
弱势群体,因为许多退伍军人在经济上处于不利地位,并有可能增加
护理交付费用。另一个主要问题是护理分裂。然而,非VA护理和
性能指标缺乏护理分裂。我们的目标是确定社会风险因素和水平
护理分裂影响手术结果,以告知VA质量指标政策和机构
资源分配。我们通过将手术结果数据与1)VA/Centers一起加入手术结果数据来改善当前实践
有关Medicare&Medicaid服务(CMS)索赔数据,2)VA费用文件,以识别以外的相遇
VA卫生系统和3)使用更多颗粒状的代理社会风险因素和社区劣势。
意义/影响:我们的意义是使用社会风险因素,农村,生活在外科手术结果中建模
处境不利的社区和护理分裂,以识别导致医疗保健差异的因素
并为VA政策提供信息。影响是使用社会风险因素和护理分裂来开发质量指标。
HSR&D优先领域:农村健康,健康公平,卫生保健价值和医疗保健信息学。
创新:加入多种数据源以使用两种传统参数方法开发预测模型
以及探索机器学习技术,为临床医生和管理人员提供结果和
改变机构实践所需的经济分析,以使我们最脆弱的退伍军人受益。
具体目的:
目标1:通过评估种族,种族,SES,地点的贡献来确定影响手术结果的因素
居住和护理碎片对手术并发症,再选中和死亡率
假设:使用种族/种族少数群体地位,SES,居住地和护理分裂将确定
术后并发症,再选中和死亡率的重要风险因素
目标2:评估社会风险因素和护理分裂对医院绩效指标的影响
再入院和死亡率
假设:在风险调整模型中包括社会风险因素和护理分裂
更改VA医院的绩效排名
目标3:确定居住地,护理分裂,SES和少数群体与急性的关系
和长期VA手术保健利用以告知VA资源分配
假设:低SES,乡村,护理分裂和少数群体状况与更高的VA资源有关
利用率
方法论:使用传统参数和探索机器学习技术进行定量分析
在不同的数据集上进行,以开发使用护理碎片的手术结果的预测模型,
针对医疗合并症调整的乡村和社会风险因素风险,并应用于VA质量指标。
实施/下一步:使用社会风险因素和护理部署高质量的度量模型
VA系统中的分裂。调整资源分配以说明社会风险因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel E Hall其他文献
Outcomes of Women Undergoing Noncardiac Surgery in Veterans Affairs Compared With Non-Veterans Affairs Care Settings.
退伍军人事务部与非退伍军人事务部护理机构中接受非心脏手术的女性的结果进行比较。
- DOI:
10.1001/jamasurg.2023.8081 - 发表时间:
2024 - 期刊:
- 影响因子:16.9
- 作者:
Elizabeth L George;Michael A. Jacobs;K. Reitz;Nader N Massarweh;A. Youk;Shipra Arya;Daniel E Hall - 通讯作者:
Daniel E Hall
Daniel E Hall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel E Hall', 18)}}的其他基金
Understanding the effect of rurality and social risk factors on barriers to care and surgical outcomes.
了解农村和社会风险因素对护理和手术结果障碍的影响。
- 批准号:
10187736 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Understanding the effect of rurality and social risk factors on barriers to care and surgical outcomes.
了解农村和社会风险因素对护理和手术结果障碍的影响。
- 批准号:
10677260 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Improving surgical decision-making by measuring and predicting long-term loss of independence after surgery
通过测量和预测术后长期丧失独立性来改善手术决策
- 批准号:
10316647 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Pilot testing a home-based rehabilitation intervention designed to improve outcomes of frail Veterans following cardiothoracic surgery
试点测试一种家庭康复干预措施,旨在改善心胸外科手术后体弱退伍军人的预后
- 批准号:
9922125 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Pilot Testing Prehabilitation Services Aimed at Improving Outcomes of Frail Veterans Following Major Abdominal Surgery
试点康复服务旨在改善体弱的退伍军人在接受重大腹部手术后的结果
- 批准号:
9291841 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Describing Variation in IRB Efficiency, Quality and Procedures
描述 IRB 效率、质量和程序的变化
- 批准号:
8597960 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Describing Variation in IRB Efficiency, Quality and Procedures
描述 IRB 效率、质量和程序的变化
- 批准号:
8279692 - 财政年份:2012
- 资助金额:
-- - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Meeting the Challenges of COVID-19 by Expanding the Reach of Palliative Care: Proactive Advance Care Planning with Videos for the Elderly and all Patients with Dementia
通过扩大姑息治疗的范围来应对 COVID-19 的挑战:为老年人和所有痴呆症患者提供视频的主动预先护理计划
- 批准号:
10784057 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Integrating the Youth Nominated Support Team (YST) with CBT for Black Youth with Acute Suicide Risk
将青年提名支持团队 (YST) 与针对有急性自杀风险的黑人青年的 CBT 相结合
- 批准号:
10573542 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Understanding the relationship between nurse staffing and outcomes: impact of individual nurse education, expertise, and effort level on individual patient outcomes
了解护士人员配置与结果之间的关系:护士个体教育、专业知识和努力水平对个体患者结果的影响
- 批准号:
10642570 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Integrated Treatment for Enhancing Growth in Recovery during Adolescence (InTEGRA)
促进青春期恢复生长的综合治疗 (InTEGRA)
- 批准号:
10680616 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Treatment Development for Smoking Cessation and Engagement in HIV/TB Care in South Africa
南非戒烟和参与艾滋病毒/结核病护理的治疗方法开发
- 批准号:
10706874 - 财政年份:2023
- 资助金额:
-- - 项目类别: