Integration of sleep/wake network models across multiple temporal and spatial sca

跨多个时间和空间尺度的睡眠/唤醒网络模型的集成

基本信息

  • 批准号:
    8568069
  • 负责人:
  • 金额:
    $ 8.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-05 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Sleep in mammals is regulated on multiple temporal and spatial scales. Recent experimental findings have revealed the importance of neuronal sleep/wake control systems in the brainstem and hypothalamus operating on the millisecond timescale that affect the organism's behavior on the hour timescale. These systems include mutually inhibitory sleep-promoting and wake-promoting nuclei that together comprise the "sleep/wake switch". It has been proposed that inputs to this switch, including the output of the master circadian pacemaker located in the suprachiasmatic nucleus (SCN) of the mammalian hypothalamus, and the sleep homeostatic process produce the observed sleep/wake cycles. This sleep/wake switch theory has become the basis for understanding some sleep disorders (e.g., narcolepsy) and the effects of aging on sleep. In the last 6 years, several mathematical models of this system have been proposed at different spatial scales, including neural mass (neuronal population level) and neuronal network (single neuron level) models. These models have been used for relating behavioral phenotypes to underlying physiology and testing assumptions about our theoretical models of sleep. However, the existing models are limited in their spatial and temporal scales, making it impossible to study multi-scale interactions, e.g., interactions between chronic sleep restriction (long timescale) and sleep fragmentation (short timescale). Moreover, model assumptions about the spatial and temporal properties of the underlying physiology have not been tested. Mathematical models have proven important in defining normal and abnormal physiological relationships, and testing potential treatments in many health- related areas. Therefore, integrating models of sleep across spatial and temporal scales will improve understanding of sleep physiology and pathophysiology, and be instrumental in designing interventions. To achieve integration of sleep models across spatial and temporal scales, we will pursue four linked goals. (i) To determine the conditions under which neural mass models and neuronal network models of the sleep/wake switch predict the same dynamics. We will develop a neuronal network version of our existing neural mass model and test the effects of parameter heterogeneity, network size, and network connectivity. (ii) To test the hypothesis that sleep is inherently fragmented on short timescales due to noisy input to the sleep/wake switch. To achieve this, we will incorporate noisy inputs into both neural mass and neuronal network models and compare predictions to human data from an inpatient protocol. (iii) To test the hypothesis that chronic sleep restriction effects on sleep and performance are due to an interaction between the sleep/wake switch and long timescale dynamics of adenosine receptors. To achieve this, we will add long timescale dynamics of adenosine receptor density to both of our models; up-regulation of A1 receptors has been proposed to underlie the observed sleep and performance responses to chronic sleep restriction. Model predictions will be compared to human data from a chronic sleep restriction protocol. (iv) Sleep/wake switch models predict that the stability of sleep and wake states should decrease as a sleep/wake transition approaches. Consequently, variability in firing rates and voltages of neurons in the sleep/wake switch should increase prior to a transition. We will test this prediction by comparing the predictions of both models to in vivo multi-unit recordings of the sleep/wake switch nuclei in freely behaving rats. Our work will: (i) Develop a standardized approach to modeling sleep physiology. (ii) Lead to the development of predictive models of sleep that are applicable to a wider range of domains, including sleep fragmentation and chronic sleep restriction. (iii) Provide the first direct quantitative test of the sleep/wake switch theory. These important goals are related but can also be achieved independently. Dr. Phillips' strong background in mathematical modeling of sleep and circadian rhythms provides him with the ideal expertise to tackle this project. He will also be greatly assisted by the experimental and mathematical expertise of his mentor, Dr. Klerman, who is head of the Analytic & Modeling Unit within the Division of Sleep Medicine (DSM) at Brigham & Women's Hospital, Harvard Medical School (HMS). The rich research environment at HMS provides extremely fertile ground for interdisciplinary and collaborative projects. In parallel with these research plans, we have prepared a detailed personal development plan to enable Dr. Phillips to build new skills and transition smoothly to independence. Dr. Phillips' immediate goals are to (i) expand his skills in computational neuroscience; (ii) receive focused training in biostatistics; (iii) build his experiece in teaching, mentorship, leadership, and organization; and (iv) produce high impact publications in the fields of sleep and circadian research. His plan to receive focused training in areas (i), (i), and (iii) is described in the proposal. The proposed research plan should also lead to high impact publications, due to its innovative approach, timeliness, and importance. This research and career development plan will build upon Dr. Phillips' existing research and expertise, and will open many new research directions for his career as an independent researcher. The proposed project will grant Dr. Phillips the necessary protected time to conduct research, achieve the necessary experience, and learn the requisite skills to achieve these long-term goals.
描述(由申请人提供):哺乳动物的睡眠在多个时间和空间尺度上受到调节。最近的实验结果揭示了脑干和下丘脑中神经元睡眠/觉醒控制系统的重要性,这些系统在毫秒时间尺度上运行,影响生物体在小时时间尺度上的行为。这些系统包括相互抑制的睡眠促进核和唤醒促进核,它们共同构成“睡眠/觉醒开关”。有人提出,该开关的输入(包括位于哺乳动物下丘脑视交叉上核(SCN)的主昼夜节律起搏器的输出)和睡眠稳态过程产生了观察到的睡眠/觉醒周期。这种睡眠/觉醒转换理论已成为理解某些睡眠障碍(例如发作性睡病)和衰老对睡眠影响的基础。在过去的六年里,该系统的几个数学模型在不同的空间尺度上被提出,包括神经质量(神经元群体水平)和神经元网络(单个神经元水平)模型。这些模型已用于将行为表型与基础生理学联系起来,并测试有关睡眠理论模型的假设。然而,现有模型在空间和时间尺度上受到限制,无法研究多尺度相互作用,例如慢性睡眠限制(长时间尺度)和睡眠碎片(短时间尺度)之间的相互作用。此外,关于基础生理学的空间和时间特性的模型假设尚未经过测试。事实证明,数学模型对于定义正常和异常的生理关系以及测试许多健康相关领域的潜在治疗方法非常重要。因此,跨空间和时间尺度整合睡眠模型将提高对睡眠生理学和病理生理学的理解,并有助于设计干预措施。 为了实现跨空间和时间尺度的睡眠模型的整合,我们将追求四个相互关联的目标。 (i) 确定睡眠/觉醒开关的神经质量模型和神经元网络模型预测相同动态的条件。我们将开发现有神经质量模型的神经网络版本,并测试参数异质性、网络大小和网络连接性的影响。 (ii) 测试以下假设:由于睡眠/唤醒开关的噪声输入,睡眠本质上在短时间尺度上是碎片化的。为了实现这一目标,我们将把噪声输入纳入神经质量和神经元网络模型中,并将预测与住院协议中的人类数据进行比较。 (iii) 检验以下假设:慢性睡眠限制对睡眠和表现的影响是由于睡眠/觉醒转换与腺苷受体的长时间尺度动态之间的相互作用造成的。为了实现这一目标,我们将在两个模型中添加腺苷受体密度的长时间尺度动态; A1 受体的上调被认为是观察到的睡眠和对慢性睡眠限制的表现反应的基础。模型预测将与长期睡眠限制方案的人类数据进行比较。 (iv) 睡眠/唤醒切换模型预测,随着睡眠/唤醒转换的临近,睡眠和唤醒状态的稳定性会降低。因此,在转换之前,睡眠/唤醒开关中神经元的放电率和电压的可变性应该增加。我们将通过将两种模型的预测与自由行为大鼠睡眠/觉醒开关核的体内多单元记录进行比较来测试这一预测。 我们的工作将: (i) 开发一种标准化的睡眠生理学建模方法。 (ii) 导致开发适用于更广泛领域的睡眠预测模型,包括睡眠碎片化和长期睡眠限制。 (iii) 提供睡眠/觉醒转换理论的第一个直接定量测试。这些重要目标是相关的,但也可以独立实现。 菲利普斯博士在睡眠和昼夜节律数学建模方面的深厚背景为他提供了解决该项目的理想专业知识。他的导师 Klerman 博士的实验和数学专业知识也将为他提供极大帮助,Klerman 博士是哈佛医学院 (HMS) 布莱根妇女医院睡眠医学科 (DSM) 分析与建模部门的负责人。 HMS 丰富的研究环境为跨学科和合作项目提供了极其肥沃的土壤。 在这些研究计划的同时,我们还准备了详细的个人发展计划,以使菲利普斯博士能够培养新技能并顺利过渡到独立。菲利普斯博士的近期目标是(i)扩展他在计算神经科学方面的技能; (ii) 接受生物统计学方面的重点培训; (iii) 积累教学、指导、领导和组织方面的经验; (iv) 在睡眠和昼夜节律研究领域发表高影响力的出版物。提案中描述了他计划接受 (i)、(i) 和 (iii) 领域的重点培训。由于其创新方法、及时性和重要性,拟议的研究计划还应产生高影响力的出版物。这项研究和职业发展计划将建立在菲利普斯博士现有的研究和专业知识的基础上,并将为他作为独立研究员的职业生涯开辟许多新的研究方向。拟议的项目将为菲利普斯博士提供必要的受保护时间来进行研究、获得必要的经验并学习实现这些长期目标所需的技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew John Phillips其他文献

Andrew John Phillips的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew John Phillips', 18)}}的其他基金

Integration of sleep/wake network models across multiple temporal and spatial sca
跨多个时间和空间尺度的睡眠/唤醒网络模型的集成
  • 批准号:
    9050862
  • 财政年份:
    2013
  • 资助金额:
    $ 8.88万
  • 项目类别:
Integration of sleep/wake network models across multiple temporal and spatial sca
跨多个时间和空间尺度的睡眠/唤醒网络模型的集成
  • 批准号:
    8714049
  • 财政年份:
    2013
  • 资助金额:
    $ 8.88万
  • 项目类别:

相似国自然基金

依恋相关情景模拟对成人依恋安全感的影响及机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
  • 批准号:
    81961138012
  • 批准年份:
    2019
  • 资助金额:
    100 万元
  • 项目类别:
    国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
  • 批准号:
    31900778
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
  • 批准号:
    10605737
  • 财政年份:
    2023
  • 资助金额:
    $ 8.88万
  • 项目类别:
Cortical Circuit Formation and Plasticity Following Neonatal Brain Injury
新生儿脑损伤后的皮质回路形成和可塑性
  • 批准号:
    9035447
  • 财政年份:
    2015
  • 资助金额:
    $ 8.88万
  • 项目类别:
Cortical Circuit Formation and Plasticity Following Neonatal Brain Injury
新生儿脑损伤后的皮质回路形成和可塑性
  • 批准号:
    8873442
  • 财政年份:
    2015
  • 资助金额:
    $ 8.88万
  • 项目类别:
Integration of sleep/wake network models across multiple temporal and spatial sca
跨多个时间和空间尺度的睡眠/唤醒网络模型的集成
  • 批准号:
    9050862
  • 财政年份:
    2013
  • 资助金额:
    $ 8.88万
  • 项目类别:
Synaptic mechanisms of auditory memory
听觉记忆的突触机制
  • 批准号:
    10467043
  • 财政年份:
    2013
  • 资助金额:
    $ 8.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了