Volume and Morphology of Fibroglandular Tissue for Breast Cancer Risk Prediction
纤维腺组织的体积和形态用于乳腺癌风险预测
基本信息
- 批准号:8450061
- 负责人:
- 金额:$ 20.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-15 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingAdipose tissueAdvisory CommitteesAffectAgeAmerican Cancer SocietyAreaAttentionBenignBilateralBostonBreastBreast Cancer DetectionBreast Cancer PreventionCaliforniaCancer ControlCancer PatientCase-Control StudiesCommunitiesComputer softwareConsensusData SetDatabasesDensitometryDevelopmentDiagnosticDiseaseFamilyFoundationsGuidelinesHealthHigh Risk WomanHormonalImageIndividualInterventionLive BirthLongitudinal StudiesMagnetic Resonance ImagingMalignant NeoplasmsMammographic DensityMammographyMeasurementMeasuresMethodsModelingMorphologyOutcomePatientsPatternPlayPreventiveRadiology SpecialtyRecording of previous eventsRelative (related person)ResearchResearch DesignResearch PersonnelRiskRisk AssessmentRisk EstimateRisk FactorsRisk ManagementRoleServicesSource CodeTestingThree-Dimensional ImagingTimeTissuesUniversitiesWeightWomanbasebreast densitycancer riskcase controlcohortdensityfollow-uphigh riskimaging modalityimprovedindexingmalignant breast neoplasmprospectivepublic health relevancescreeningsuccesstooltv watching
项目摘要
DESCRIPTION (provided by applicant): Volume and Morphology of Fibroglandular Tissue for Breast Cancer Risk Prediction The role of breast density as a strong risk predictor for development of breast cancer has been established by many studies. The Breast Cancer Prevention Collaborative Group has recommended that quantitative breast density should be incorporated into the cancer risk prediction model, but how to reliably measure quantitative density parameters is still an active research area. In addition to the amount of density, the morphological distribution pattern of dense tissue may also play a role in risk prediction, which can only be analyzed on 3-dimensional images. In this R21 application we will evaluate the role of MRI-based density parameters, including the volume and the morphology of the fibroglandular tissue, and build a risk prediction model using a case-control study design. Three aims are proposed. Aim-1 will develop a fully automated segmentation software to segment the breast and the fibroglandular tissue. This software will be made available for sharing, and it will
provide a very useful tool for researchers in the breast densitometry research field to analyze large datasets. Aim-2 will develop a risk prediction model based on the MRI-analyzed fibroglandular tissue volume and the morphological distribution pattern, in combination with six basic risk factors (age, hormonal use, family history, prior benign disease, weight, number of live birth) to differentiate between patients who were found to have cancer in screening MRI (cases) vs. matching controls. We have access to a large screening MRI database for retrospective analysis. It is estimated that 220 cancer cases will be available, and by using a 1:5
ratio we will select 1,100 matching controls for analysis. Then Aim-3 will evaluate how the fibroglandular tissue volume and morphological index may be used to improve the risk prediction accuracy, by comparing to the risks estimated by using existing standard models. The history sheet that each subject filled out will be used to calculate the risk scores by using Gail,
Claus, BRCAPRO and Tyrer-Cuzick models. The ability of these existing models in differentiating between the cancer cases and controls will be compared to that analyzed using the MRI-density model developed in Aim-2, and the results will allow us to evaluate the added value of breast density in risk prediction. The success of this R21 will build a great foundation for a subsequent longitudinal study, using a prospective screening database that is being collected now within the Athena Breast Health Network formed by five University of California campuses.
描述(由申请人提供):许多研究已经确定了乳腺癌风险预测乳腺癌风险预测乳腺癌风险的作用的数量和形态。乳腺癌预防合作组建议将定量乳房密度纳入癌症风险预测模型,但是如何可靠地衡量定量密度参数仍然是一个活跃的研究领域。除了密度量之外,密集组织的形态分布模式也可能在风险预测中起作用,只能在3维图像上进行分析。在此R21应用中,我们将评估基于MRI的密度参数的作用,包括纤维球组织的体积和形态,并使用病例对照研究设计建立风险预测模型。提出了三个目标。 AIM-1将开发一个全自动分割软件,以分割乳房和纤维状组织。该软件将用于共享,它将
为乳腺密度计研究领域的研究人员提供了一个非常有用的工具,以分析大型数据集。 AIM-2将基于MRI分析的纤维球组织量和形态分布模式开发风险预测模型,并结合六个基本危险因素(年龄,荷尔蒙使用,家族史,先前的良性疾病,体重,活产数,活体育次数, )区分在筛查MRI(病例)与匹配对照中发现癌症的患者。我们可以访问大型筛选MRI数据库进行回顾性分析。据估计,将有220例癌症病例,并使用1:5
比率我们将选择1,100个匹配控件进行分析。然后,AIM-3将通过比较使用现有标准模型估计的风险来评估如何使用纤维结构组织体积和形态指数来提高风险预测准确性。每个受试者填写的历史表将使用盖尔(Gail)来计算风险评分
Claus,Brcapro和Tyrer-Cuzick模型。将这些现有模型在区分癌症病例和对照组中的能力与使用AIM-2中开发的MRI密度模型进行了比较,结果将使我们能够评估风险预测中乳房密度的附加值。 R21的成功将为随后的纵向研究奠定了良好的基础,该研究使用了一个预期的筛查数据库,该数据库现在正在加州大学五个校园组成的雅典娜乳房健康网络中收集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeon-Hor Chen其他文献
Jeon-Hor Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeon-Hor Chen', 18)}}的其他基金
Mammographic Density and Metabolic Genotyping for Predicting Cancer Prognosis
用于预测癌症预后的乳房 X 线摄影密度和代谢基因分型
- 批准号:
9376399 - 财政年份:2017
- 资助金额:
$ 20.06万 - 项目类别:
Volume and Morphology of Fibroglandular Tissue for Breast Cancer Risk Prediction
纤维腺组织的体积和形态用于乳腺癌风险预测
- 批准号:
8604697 - 财政年份:2013
- 资助金额:
$ 20.06万 - 项目类别:
Evaluation of 3D MRI-Based Quantitative Breast Density for Chemoprevention
基于 3D MRI 的定量乳腺密度对化学预防的评估
- 批准号:
7663554 - 财政年份:2009
- 资助金额:
$ 20.06万 - 项目类别:
Evaluation of 3D MRI-Based Quantitative Breast Density for Chemoprevention
基于 3D MRI 的定量乳腺密度对化学预防的评估
- 批准号:
7778380 - 财政年份:2009
- 资助金额:
$ 20.06万 - 项目类别:
相似国自然基金
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
异常获利、捐赠与会计信息操纵:基于新冠疫情的准自然实验研究
- 批准号:72372061
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
相似海外基金
3D Bioprinting of Biomimetic Constructs for Rotator Cuff Augmentation
用于肩袖增强的仿生结构的 3D 生物打印
- 批准号:
10410435 - 财政年份:2018
- 资助金额:
$ 20.06万 - 项目类别:
3D Bioprinting of Biomimetic Constructs for Rotator Cuff Augmentation
用于肩袖增强的仿生结构的 3D 生物打印
- 批准号:
10188428 - 财政年份:2018
- 资助金额:
$ 20.06万 - 项目类别:
Functional and Mechanistic Analysis of Mesenchymal Stem Cell Secretome to Ameliorate Ischemic Damage of Rodent Hearts in situ and Human Myocardium-on-a-Chip
间充质干细胞分泌组改善啮齿动物原位心脏和人心肌芯片缺血损伤的功能和机制分析
- 批准号:
9898148 - 财政年份:2017
- 资助金额:
$ 20.06万 - 项目类别:
Functional and Mechanistic Analysis of Mesenchymal Stem Cell Secretome to Ameliorate Ischemic Damage of Rodent Hearts in situ and Human Myocardium-on-a-Chip
间充质干细胞分泌组改善啮齿动物原位心脏和人心肌芯片缺血损伤的功能和机制分析
- 批准号:
10394875 - 财政年份:2017
- 资助金额:
$ 20.06万 - 项目类别:
Functional and Mechanistic Analysis of Mesenchymal Stem Cell Secretome to Ameliorate Ischemic Damage of Rodent Hearts in situ and Human Myocardium-on-a-Chip
间充质干细胞分泌组改善啮齿动物原位心脏和人心肌芯片缺血损伤的功能和机制分析
- 批准号:
10265387 - 财政年份:2017
- 资助金额:
$ 20.06万 - 项目类别: