Neural Interface and Control Design to Restore Sensation in Amputees
用于恢复截肢者感觉的神经接口和控制设计
基本信息
- 批准号:8278363
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:Afferent NeuronsAmputeesArticular Range of MotionBackBiological Neural NetworksComputer softwareContralateralDataElectric StimulationElectrodesEnsureEnvironmentEsthesiaFiberFoundationsFrequenciesFutureGoalsHandImplantLeadLifeLimb structureLocationManuscriptsMapsMedicineModalityMotorMuscleMyoelectric prosthesisNerveNervous system structureNeural PathwaysPainPatternPerceptionPeripheral Nerve StimulationPeripheral NervesPhasePlanning TechniquesPopulationPositioning AttributeProprioceptionProsthesisQuality of lifeRadialRampResearchResearch Project GrantsResidual stateRubberSensorySensory ReceptorsSeriesShoulderStimulusStretchingSystemTechnologyTemperatureTestingTimeTouch sensationUpper Extremityafferent nervearmbasecombatdesignflexibilitygraspimprovednew technologynovelpressurerelating to nervous systemresearch studyresponsesensorsensory feedbacksuccesstheoriesvibrationvisual feedback
项目摘要
DESCRIPTION
Rationale: The standard upper extremity prosthesis has been a cable-based system in which cables attached to the prosthesis wrap around the back to the contralateral shoulder. By manipulating the contralateral shoulder, the user controls the function of the prosthesis, such as gripping or releasing an object, as well as the force that is applied by the prosthesis. While not natural, the user does receive a form of sensory feedback from the amount of tension developed in the cables. In more recent years, myoelectric prostheses have become available. These newer prostheses rely on voluntary contraction of the residual muscles of the amputated limb to control the function of the prosthesis. While myoelectric prostheses are more cosmetically pleasing and provide a greater range of motion than the traditional cable-based system, they lack sensory feedback. Because the hands are key for manipulating the external environment, sensory feedback is critical in the upper extremities. The ideal artificial sensory feedback mechanism would be one that produces the exact same perception as the non-amputated limb. Although the sensory receptors are missing in the amputated limb, the neural pathways that once carried sensory information remain intact and can be excited with electrical stimulation, thus affording an opportunity for providing sensory feedback to the amputee. Objective: The objective of this study is to prove that electrical stimulation applied to the residal nerves in an amputee in a controlled manner can provide sensory feedback that can be modulated and is reproducible. Further, this study aims to demonstrate that the sensations induced by electrical stimulation are stable over time and that their locations can be artificially
manipulated without altering stimulus parameters. Numerous hypotheses will be tested through a series of experiments that span a 10 week time period. Research Plan and Methodology: Five subjects will be implanted with nerve cuff electrodes around residual nerves in their arm: the median, radial, ulnar, and musculocutaenous nerves. Stimulus space will be searched in a gross, rapid manner over the first four weeks of the study. The most promising stimulus parameters and the space surrounding them will be tested in more detail during the next 6 weeks. Subjects will be queried for their perceptions to stimulation and how those perceptions change with time or with changes in stimulus parameters. Sensations that the limb has changed position will be studied by having the subject mirror the position with the contralateral, intact limb. Limb positions will be recorded with a Vicon system. In addition to creating a stimulus-to-percept map, which may vary over time, a percept will be singled out for the purpose of artificial relocation. This will be accomplished by stimulating the nerve and inducing a percept that is in disagreement with what the subject sees. Specifically, pressure will be applied to the fingertip of
the subject's prosthesis at the same time that the subject's nerve is stimulated with a set of stimulus parameters known to induce a sensation somewhere else. The visual feedback should allow the subject to "adjust" the location of the perception to the fingertip. Successful relocatio of a sensation may allow a perfect mapping from where a clinician wants a stimulus to be perceived and where the subject actually perceives it. In addition to the data gathered during the study, which will lead to two manuscripts, a software package will exist that allows fast, efficien, and meaningful stimulus optimization at the conclusion of the study. This software will be useful in future studies that incorporate additional stimulus channels or locations. The data obtained in this study will guide a future phase in which a prosthesis is designed to control sensory feedback and the subject's ability to perform tasks of daily living with the sensory feedback is evaluated.
PUBLIC HEALTH RELEVANCE:
The amputee population continues to grow due to improvements in combat armor and medicine. While the amputee can be fitted with a prosthesis that allows objects to be manipulated, the amputee is unable to feel the object. Lack of perception of how the prosthesis interacts with the environment decreases ease of use and contributes to a sense of disassociation between the user and the prosthesis. It is believed that sensory feedback is critical for efficient prosthesis use and will improve the user's quality of life. This research ais to improve the quality of life of amputees by laying a foundation upon which novel technologies can be used to restore sensation. Flexible cuffs will be implanted around sensory nerves in the arm of amputees. Low-level electrical nerve stimulation will restore sensation of the amputated arm. The goal is for the amputee to feel where the prosthesis is in space as well as pressure that the prosthesis exerts on objects that the user manipulates.
描述
理由:标准的上肢假肢是一个基于电缆的系统,其中连接到假肢的电缆缠绕在对侧肩部的背部。通过操纵对侧肩部,用户可以控制假肢的功能,例如抓握或释放物体,以及假肢施加的力。虽然不自然,但用户确实会从电缆中产生的张力中收到某种形式的感官反馈。近年来,肌电假肢已经问世。这些较新的假肢依靠截肢残余肌肉的自主收缩来控制假肢的功能。虽然肌电假肢比传统的基于电缆的系统更美观并且提供更大的运动范围,但它们缺乏感觉反馈。由于手是操纵外部环境的关键,因此上肢的感觉反馈至关重要。理想的人工感觉反馈机制应该能够产生与未截肢的肢体完全相同的感知。尽管截肢者缺失了感觉受体,但曾经携带感觉信息的神经通路仍然完好无损,并且可以通过电刺激而兴奋,从而为截肢者提供了感觉反馈的机会。目的:本研究的目的是证明以受控方式对截肢者的残余神经施加电刺激可以提供可调节且可重复的感觉反馈。此外,这项研究旨在证明电刺激引起的感觉随着时间的推移是稳定的,并且它们的位置可以人为地确定
在不改变刺激参数的情况下进行操纵。许多假设将通过一系列为期 10 周的实验进行检验。研究计划和方法:将在五名受试者手臂的残余神经周围植入神经袖带电极:正中神经、桡神经、尺神经和肌肉皮肤神经。在研究的前四个星期内,将以粗略、快速的方式搜索刺激空间。最有希望的刺激参数及其周围的空间将在接下来的 6 周内进行更详细的测试。将询问受试者对刺激的感知以及这些感知如何随时间或刺激参数的变化而变化。通过让受试者镜像对侧完整肢体的位置来研究肢体已改变位置的感觉。将使用 Vicon 系统记录肢体位置。除了创建可能随时间变化的刺激到感知图之外,还将挑选出感知以进行人工重新定位。这将通过刺激神经并诱导与受试者所看到的不一致的知觉来实现。具体来说,压力将施加到指尖
同时,用一组已知会在其他地方引起感觉的刺激参数刺激受试者的神经。视觉反馈应该允许受试者将感知的位置“调整”到指尖。成功地重新定位感觉可以实现临床医生想要感知刺激的位置和受试者实际感知刺激的完美映射。除了研究期间收集的数据(将产生两份手稿)之外,还将存在一个软件包,可以在研究结束时实现快速、高效且有意义的刺激优化。该软件将在未来纳入额外刺激通道或位置的研究中发挥作用。这项研究中获得的数据将指导未来的阶段,即设计假肢来控制感觉反馈,并评估受试者利用感觉反馈执行日常生活任务的能力。
公共卫生相关性:
由于战斗装甲和医学的改进,截肢者人数持续增长。虽然截肢者可以安装假肢来操纵物体,但截肢者无法感觉到物体。缺乏对假肢如何与环境相互作用的感知会降低使用的便利性,并导致使用者和假肢之间产生脱离感。人们相信,感官反馈对于有效使用假肢至关重要,并将提高使用者的生活质量。这项研究旨在通过为新技术恢复感觉奠定基础,提高截肢者的生活质量。柔性袖带将被植入截肢者手臂的感觉神经周围。低水平的神经电刺激将恢复截肢手臂的感觉。目标是让截肢者感受到假肢在空间中的位置以及假肢对用户操纵的物体施加的压力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATTHEW Anthony SCHIEFER其他文献
MATTHEW Anthony SCHIEFER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATTHEW Anthony SCHIEFER', 18)}}的其他基金
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Developing a novel stimulus paradigm and interface of vagal nerve stimulation (VNS) to treat obesity
开发一种新的刺激范式和迷走神经刺激(VNS)界面来治疗肥胖
- 批准号:
10597120 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Developing a novel stimulus paradigm and interface of vagal nerve stimulation (VNS) to treat obesity
开发一种新的刺激范式和迷走神经刺激(VNS)界面来治疗肥胖
- 批准号:
10425537 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Toward Closed-Loop Control of Homeostatic Blood Pressure Following Spinal Cord Injury
脊髓损伤后稳态血压的闭环控制
- 批准号:
10311117 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Design and Application of Custom Waveforms to Restore and Control Satiety
恢复和控制饱腹感的定制波形的设计和应用
- 批准号:
10390275 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Design and Application of Custom Waveforms to Restore and Control Satiety
恢复和控制饱腹感的定制波形的设计和应用
- 批准号:
9795377 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Design and Application of Custom Waveforms to Restore and Control Satiety
恢复和控制饱腹感的定制波形的设计和应用
- 批准号:
10011592 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Neural Interface and Control Design to Restore Sensation in Amputees
用于恢复截肢者感觉的神经接口和控制设计
- 批准号:
8499094 - 财政年份:2012
- 资助金额:
-- - 项目类别:
相似国自然基金
面向膝上截肢者融合智能下肢假肢的新型外骨骼机器人关键技术研究
- 批准号:61803272
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于无声语音及肌电信息融合的多功能假肢控制研究
- 批准号:61203209
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Screening of Above Elbow Amputees for Advanced Prosthetic Devices
对肘部以上截肢者进行高级假肢装置筛查
- 批准号:
10394120 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Screening of Above Elbow Amputees for Advanced Prosthetic Devices
对肘部以上截肢者进行高级假肢装置筛查
- 批准号:
10731362 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Screening of Above Elbow Amputees for Advanced Prosthetic Devices
对肘部以上截肢者进行高级假肢装置筛查
- 批准号:
10531885 - 财政年份:2018
- 资助金额:
-- - 项目类别: