Single Molecule Enzymology with Carbon Nanocircuits
碳纳米电路的单分子酶学
基本信息
- 批准号:8115098
- 负责人:
- 金额:$ 22.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectArchitectureBindingBiochemicalBiologicalCancer EtiologyCarbonCarbon NanotubesCatalysisCaveolinsCell physiologyCellsChemistryClinicCouplingCysteineDeoxyribonucleasesDevelopmentDevicesDiseaseElectrodesElectron TransportElectronicsEnzymatic BiochemistryEnzymesEventExhibitsGoalsHereditary DiseaseIndividualKineticsLaboratoriesLearningLinkLysineMalignant NeoplasmsMeasurementMediatingMediationMethodologyMethodsMicrofabricationMicroscopeMolecularMonitorMuramidaseNanotubesProteinsPublishingRNA SplicingReportingResearch PersonnelScienceSignal TransductionSignaling ProteinSiteSulfhydryl CompoundsTechniquesThermodynamicsTimeVariantWorkattenuationbasecarboxylatecaveolin 1designhuman diseasemolecular dynamicsmutantnanoscalenew technologynovel strategiesprotein functionpublic health relevanceresearch studysingle moleculetheoriestumortumorigenic
项目摘要
DESCRIPTION (provided by applicant): A single errant cell can instigate cancer. To trigger this disease, mutant proteins either singly or in groups disrupt normal cellular function. What does one abnormal protein look like? How do the dynamics of the mutant compare to the kinetics of wild- type? In the studies proposed here, single molecules will be individually examined to characterize the basis for their contributions to molecular disease. The microscope used to examine the proteins one-at-a-time is a new type of nanocircuit reported by the Investigators recently in Science. The project leverages advances in microfabrication and the controlled synthesis of a single carbon nanotube contacting multiple electrodes. In published preliminary results, the Investigators have demonstrated conductance-controlled introduction of a single, carboxylate handle onto the sidewall of a nanotube connected into a nanocircuit. Through bioconjugation to the carboxylate handle, a single protein can be connected into the nanocircuit. Though standard EDC/NHS coupling chemistry provides stochastic conjugation to a random lysine, specific cysteine free thiols can be used to direct connections to particular sites within the protein. Using the electronic signature of the resultant nanocircuit, the single protein will be examined in real-time during protein unfolding, folding, binding, and, where applicable, catalysis. In Specific Aim 1, the current design for carbon nanocircuits will be extended for sensitive measurements with multiple proteins in parallel. Single molecule experiments will benefit from this parallel device architecture in two scenarios explored in the next specific aims. Simultaneous interrogation of different proteins or protein variants can elucidate functional differences under identical conditions, such as the abnormality of a mutant protein versus wild-type. In the next specific aim, the carbon nanocircuits from Specific Aim 1 are first applied to investigate well studied proteins, thus establishing a baseline for the approach. Single molecule enzymology will explore how electron transfer, conformational change, allostery, and other issues affect nanocircuit conductance. Specific Aim 3 extends device architectures from the first and what is learned from the second to investigate the molecular basis for caveolin control over cell signaling, implicated in cancer and other diseases. The proposed studies examine how caveolin inhibits different enzymes under a range of different conditions and mutational variants. In summary, given the importance of single molecule events to disease instigation and propagation, expanded methods for single molecule studies are needed. This application leverages recent advances from the Investigators laboratories to develop a generalizable approach for single molecule enzymology. Then, the mechanistic basis for caveolin mediation of cancer will be explored at the single molecule level.
PUBLIC HEALTH RELEVANCE Individual proteins can hijack cells to cause cancer and other human diseases. This project develops new technologies for watching individual proteins. Specifically, how caveolin directs tumor formation will be investigated using a new type of nanometer-scale electronic circuit.
描述(由申请人提供):单个错误细胞可以引发癌症。为了引发这种疾病,突变蛋白会单独或成组地破坏正常的细胞功能。一种异常蛋白质是什么样的?突变体的动力学与野生型的动力学相比如何?在此提出的研究中,将单独检查单个分子,以表征它们对分子疾病的贡献的基础。用于一次检查蛋白质的显微镜是研究人员最近在《科学》杂志上报道的一种新型纳米电路。该项目利用了微加工和接触多个电极的单个碳纳米管的受控合成方面的进步。在发表的初步结果中,研究人员证明了在连接到纳米电路的纳米管的侧壁上引入了单个羧酸盐手柄的电导控制。通过与羧酸酯柄的生物共轭,单个蛋白质可以连接到纳米电路中。虽然标准 EDC/NHS 偶联化学提供了与随机赖氨酸的随机缀合,但特定的半胱氨酸游离硫醇可用于直接连接到蛋白质内的特定位点。利用所得纳米电路的电子签名,将在蛋白质解折叠、折叠、结合以及(如果适用)催化过程中实时检查单个蛋白质。在具体目标 1 中,碳纳米电路的当前设计将扩展到并行多个蛋白质的灵敏测量。在下一个具体目标中探索的两个场景中,单分子实验将受益于这种并行设备架构。同时检测不同的蛋白质或蛋白质变体可以阐明相同条件下的功能差异,例如突变蛋白质与野生型蛋白质的异常。在下一个具体目标中,具体目标 1 中的碳纳米电路首先用于研究经过充分研究的蛋白质,从而为该方法建立基线。单分子酶学将探索电子转移、构象变化、变构和其他问题如何影响纳米电路电导。具体目标 3 扩展了第一个器件架构以及从第二个器件架构中学到的知识,以研究与癌症和其他疾病有关的小窝蛋白控制细胞信号传导的分子基础。拟议的研究探讨了小窝蛋白如何在一系列不同条件和突变变体下抑制不同的酶。总之,鉴于单分子事件对疾病诱发和传播的重要性,需要扩展单分子研究的方法。该应用程序利用研究人员实验室的最新进展来开发单分子酶学的通用方法。然后,将在单分子水平上探索小窝蛋白介导癌症的机制基础。
公共卫生相关性 单个蛋白质可以劫持细胞导致癌症和其他人类疾病。该项目开发了观察单个蛋白质的新技术。具体来说,将使用新型纳米级电子电路来研究小窝蛋白如何引导肿瘤形成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory A. Weiss其他文献
Phage vs. Phage: Direct Selections of Sandwich Binding Pairs
噬菌体与噬菌体:三明治结合对的直接选择
- DOI:
10.3390/v15030807 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:0
- 作者:
Emily C. S;ers;ers;Alicia M. Santos;Eugene K. Nguyen;Aidan A. Gelston;S. Majumdar;Gregory A. Weiss - 通讯作者:
Gregory A. Weiss
UC Irvine UC Irvine Previously Published Works Title The scope of phage display for membrane proteins
加州大学欧文分校 加州大学欧文分校 先前发表的作品 标题 膜蛋白噬菌体展示的范围
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
R. Vithayathil;R. Hooy;M. Cocco;Gregory A. Weiss - 通讯作者:
Gregory A. Weiss
Continuous flow biocatalysis
- DOI:
10.1039/c7cs00906b - 发表时间:
2018-06 - 期刊:
- 影响因子:46.2
- 作者:
Joshua Britton;Sudipta Majumdar;Gregory A. Weiss - 通讯作者:
Gregory A. Weiss
Evidence for Deleterious Antigenic Imprinting in 1 SARS-CoV-2 Immune Response 2
1 SARS-CoV-2 免疫反应中有害抗原印记的证据 2
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Sanjana R. Sen;Emily C. S;ers;ers;Alicia M. Santos;K. Bhuvan;Derek Y Tang;Aidan A. Gelston;B. Miller;J. Ricks;Gregory A. Weiss - 通讯作者:
Gregory A. Weiss
Optimizing the affinity and specificity of proteins with molecular display.
通过分子展示优化蛋白质的亲和力和特异性。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Aron M. Levin;Gregory A. Weiss - 通讯作者:
Gregory A. Weiss
Gregory A. Weiss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory A. Weiss', 18)}}的其他基金
Monitoring Recurrent Bladder Cancer with Electro-Phage Biosensors
使用噬菌体生物传感器监测复发性膀胱癌
- 批准号:
9148100 - 财政年份:2016
- 资助金额:
$ 22.44万 - 项目类别:
Membrane Protein Co- Crystallization with Highly Crystalline and Soluble Proteins
膜蛋白与高度结晶和可溶性蛋白质共结晶
- 批准号:
8653582 - 财政年份:2012
- 资助金额:
$ 22.44万 - 项目类别:
Membrane Protein Co- Crystallization with Highly Crystalline and Soluble Proteins
膜蛋白与高度结晶和可溶性蛋白质共结晶
- 批准号:
8843009 - 财政年份:2012
- 资助金额:
$ 22.44万 - 项目类别:
Membrane Protein Co- Crystallization with Highly Crystalline and Soluble Proteins
膜蛋白与高度结晶和可溶性蛋白质共结晶
- 批准号:
8536875 - 财政年份:2012
- 资助金额:
$ 22.44万 - 项目类别:
Membrane Protein Co- Crystallization with Highly Crystalline and Soluble Proteins
膜蛋白与高度结晶和可溶性蛋白质共结晶
- 批准号:
8373739 - 财政年份:2012
- 资助金额:
$ 22.44万 - 项目类别:
Purchase of a MALDI-TOF-TOF Mass Spectrometer
购买 MALDI-TOF-TOF 质谱仪
- 批准号:
7595706 - 财政年份:2009
- 资助金额:
$ 22.44万 - 项目类别:
Single Molecule Enzymology with Carbon Nanocircuits
碳纳米电路的单分子酶学
- 批准号:
8305167 - 财政年份:2008
- 资助金额:
$ 22.44万 - 项目类别:
Single Molecule Enzymology with Carbon Nanocircuits
碳纳米电路的单分子酶学
- 批准号:
7893828 - 财政年份:2008
- 资助金额:
$ 22.44万 - 项目类别:
Single Molecule Enzymology with Carbon Nanocircuits
碳纳米电路的单分子酶学
- 批准号:
7664274 - 财政年份:2008
- 资助金额:
$ 22.44万 - 项目类别:
Engineering Soluble Aggregation-Prone and Membrane-Bound Proteins
工程化可溶性易聚集和膜结合的蛋白质
- 批准号:
7137979 - 财政年份:2006
- 资助金额:
$ 22.44万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Methamphetamine, HIV integration and latency in the brain
甲基苯丙胺、艾滋病毒整合和大脑潜伏期
- 批准号:
10814672 - 财政年份:2023
- 资助金额:
$ 22.44万 - 项目类别:
Translational genomics in gout: From GWAS signal to mechanism
痛风的转化基因组学:从 GWAS 信号到机制
- 批准号:
10735151 - 财政年份:2023
- 资助金额:
$ 22.44万 - 项目类别:
Mapping brain-wide opioid actions by profiling neuronal activities and in vivo cellular target engagement
通过分析神经元活动和体内细胞靶标参与来绘制全脑阿片类药物作用
- 批准号:
10775623 - 财政年份:2023
- 资助金额:
$ 22.44万 - 项目类别:
Architecture of inhibitory G protein signaling in the hippocampus
海马抑制性 G 蛋白信号传导的结构
- 批准号:
10659438 - 财政年份:2023
- 资助金额:
$ 22.44万 - 项目类别: