Morphometric and physiologic analyses of the mammalian low frequency sound locali
哺乳动物低频声音局部的形态测量和生理分析
基本信息
- 批准号:8374382
- 负责人:
- 金额:$ 14.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-12-01 至 2014-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAcuteAntibodiesAuditoryAxonBallisticsBathingBindingBirdsBrainBrain StemCaliberCharacteristicsClinicalCochlear nucleusCodeCommunitiesComputer softwareContralateralCuesDetectionDevelopmentDimensionsElectronsElectroporationFiberFluorescenceFluorescence Resonance Energy TransferFluorescent DyesFoundationsFrequenciesGerbilsGoalsHealthHearingImageIndividualIpsilateralLabelLeadLengthLightMeasurementMeasuresMedialMembraneMethodsMicroscopeMicroscopicModelingMyelinMyelin SheathNatureNeurobiologyNeuronsNoiseOpticsPathway interactionsPatternPerceptionPhysiologicalPlasticsPositioning AttributePreparationPropertyProteinsRanvier&aposs NodesRegulationResearchScanningSideSignal TransductionSliceSolidSound LocalizationSpeechSpeedSystemTechniquesTestingThickThree-Dimensional ImageTimeTravelVariantanalogattenuationbasedipicrylaminedisabilityimaging modalityinterestneural circuitneuronal cell bodynovelprogramspublic health relevancereconstructionrepairedresearch studysample fixationsegregationsoundsound frequencysuperior olivary nucleustoolvoltage
项目摘要
DESCRIPTION (provided by applicant): Understanding the precise mechanisms underlying mammalian low frequency sound localization is of much interest for both clinical (detecting speech in noise) and fundamental neurobiology (computational) reasons. The brainstem circuit underlying these mechanisms has been extensively studied and has lately enjoyed new interest among the community of auditory neuroscientists. Traditionally considered to embody a delay line system according to a model proposed over 50 years ago by Jeffress, this circuit has recently come under discussion because of its temporally precise inhibitory inputs and thus alternative mechanisms have been suggested. I believe I can contribute important new information to this topic by the experiments proposed here.
Our recent studies of the avian sound localization circuit clearly show that anatomical conduction velocity parameters can compensate for axon length differences. This led me to a new hypothesis about a physiological delay line system in the mammalian low frequency sound localization circuit. Instead of axon length, conduction velocity parameters such as axon diameter, myelin sheath thickness and internode distances may provide significant and systematic functional variations toward creating a gradient of conduction times. Moreover, differential expression in conduction velocity parameters might be responsible for the temporally precise tuning of this system in the microsecond range, essential for coincidence detection of binaural sounds arising from different positions along the azimuth.
The goal of this proposed research program is to make accurate measurements of axon length and to assess biophysical properties responsible for conduction velocity in the mammalian low frequency sound localization circuit. I hypothesize that in the mammalian low frequency sound localization circuit more features than just axon length create temporal delays. I propose that biophysical properties contribute to physiological delays in ITD coding and create the precise timing needed for the mechanism of this circuit. I will measure total length of individual axons extending from neurons in the anteroventral cochlear nucleus (AVCN) to the ipsilateral and the contralateral medial superior olivary nuclei (MSOs) in the gerbil. Additionally, I will determine axon diameter, myelin sheath thickness and distances between Nodes of Ranvier at strategic position along different segments of the AVCN axon. Finally, I will measure conduction velocities in specific axon segments and correlate them with the anatomical findings. These experiments will enable further understanding of this important brain mechanism and will provide the baseline information needed to experimentally test the importance of the regulation differential axonal characteristics for the development of coincidence detection systems. Ultimately this research will provide a basis to develop tools to repair hearing disabilities and to solve hearing related problems.
描述(由申请人提供):了解哺乳动物低频声音定位的确切机制对于临床(噪声中的检测语音)和基本神经生物学(计算)原因引起了人们的关注。这些机制的脑干电路已经进行了广泛的研究,最近在听觉神经科学家社区中享有新的兴趣。传统上,根据杰弗雷斯(Jeffress)在50年前提出的模型中体现延迟线系统,该电路最近因其时间精确的抑制输入而进行了讨论,因此提出了替代机制。我相信我可以通过此处提出的实验为该主题贡献重要的新信息。
我们最近对鸟类声音定位电路的研究清楚地表明,解剖传导速度参数可以补偿轴突长度差异。这使我提出了关于哺乳动物低频声音定位电路中生理延迟线系统的新假设。代替轴突长度,传导速度参数(例如轴突直径),髓鞘的厚度和节间距离可能会提供显着的系统功能变化,以创建传导时间的梯度。此外,传导速度参数中的差分表达可能是在微秒范围内对该系统进行时间精确调整的原因,这对于沿着方位角的不同位置引起的双耳声音的巧合检测至关重要。
该提出的研究计划的目的是对轴突长度进行准确的测量,并评估负责哺乳动物低频声音定位电路传导速度的生物物理特性。我假设在哺乳动物的低频声音定位电路中,不仅仅是轴突长度会产生时间延迟。我建议生物物理特性有助于ITD编码中的生理延迟,并创建该电路机理所需的精确时机。我将测量从前腹耳蜗核(AVCN)中延伸到同侧的单个轴突的总长度,并在Gerbil中的同侧和对侧内侧上橄榄核(MSO)。此外,我将确定轴突直径,髓鞘鞘的厚度以及沿AVCN轴突不同片段的战略位置的Ranvier节点之间的距离。最后,我将测量特定轴突段中的传导速度,并将其与解剖学发现相关联。这些实验将进一步了解这种重要的大脑机制,并将提供实验测试调节差异轴突特征在开发巧合检测系统的重要性所需的基线信息。最终,这项研究将为开发修复听力障碍并解决与听力有关的问题的工具提供基础。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Regulation of conduction time along axons.
- DOI:10.1016/j.neuroscience.2013.06.047
- 发表时间:2014-09-12
- 期刊:
- 影响因子:3.3
- 作者:Seidl AH
- 通讯作者:Seidl AH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Armin Harry Seidl其他文献
Armin Harry Seidl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Armin Harry Seidl', 18)}}的其他基金
Morphometric and physiologic analyses of the mammalian low frequency sound locali
哺乳动物低频声音局部的形态测量和生理分析
- 批准号:
8034018 - 财政年份:2010
- 资助金额:
$ 14.82万 - 项目类别:
Morphometric and physiologic analyses of the mammalian low frequency sound locali
哺乳动物低频声音局部的形态测量和生理分析
- 批准号:
8196929 - 财政年份:2010
- 资助金额:
$ 14.82万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 14.82万 - 项目类别:
CONVERGENT PROCESSING ACROSS VISUAL AND HAPTIC CIRCUITS FOR 3D SHAPE PERCEPTION
跨视觉和触觉电路的融合处理,实现 3D 形状感知
- 批准号:
10720137 - 财政年份:2023
- 资助金额:
$ 14.82万 - 项目类别:
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 14.82万 - 项目类别:
Exploring the role of ATP1A3 mutations in sudden unexplained death in epilepsy
探索 ATP1A3 突变在癫痫不明原因猝死中的作用
- 批准号:
10522820 - 财政年份:2022
- 资助金额:
$ 14.82万 - 项目类别:
Exploring the role of ATP1A3 mutations in sudden unexplained death in epilepsy
探索 ATP1A3 突变在癫痫不明原因猝死中的作用
- 批准号:
10688211 - 财政年份:2022
- 资助金额:
$ 14.82万 - 项目类别: