Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
基本信息
- 批准号:8509179
- 负责人:
- 金额:$ 14.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsActinsAnisotropyAreaAwardBehaviorBenchmarkingBiochemicalBiologicalBiomechanicsBreast Cancer CellCalibrationCell LineCell physiologyCellsCellular StructuresCellular biologyCollagenComplementComplex MixturesDataDetectionDevelopment PlansElasticityEnvironmentEthicsExhibitsExtracellular MatrixFocal AdhesionsFrequenciesGene ExpressionGoalsHourHydrogelsImageLaboratoriesLightLiteratureMCF7 cellMammary glandMapsMeasurementMeasuresMechanical StimulationMechanicsMediatingMentorsMentorshipMethodsMetricMicrofluidicsMicroscopyModelingModificationMorphogenesisMorphologic artifactsNatureNeoplasm MetastasisOpticsPathway interactionsPhysicsPropertyReadingRegulationResearchResolutionRheologyRoleSamplingScienceSignal TransductionSpeedStimulusSystemTechniquesTechnologyTestingTimeTissuesTrainingValidationVariantangiogenesisbasebiological researchcareer developmentcell behaviorcell motilitycellular imagingexperienceimaging modalityimprovedin vivoinstrumentlight scatteringmedical schoolsmigrationnoveloptical imagingphotonicsphysical sciencepolyacrylamide gelsprogramspublic health relevancereconstitutionresponsetechnology developmenttooltransmission process
项目摘要
DESCRIPTION (provided by applicant): This project features the integration of advanced photonic technology and microfluidics to attack a major unmet challenge in cell biomechanics. The cellular microenvironment critically regulates cellular function by providing a complex mixture of biochemical and biophysical stimuli. Among the components of the cell-microenvironment interaction, the role of biomechanical factors is recognized to be crucial. In recent years, tremendous progress has been achieved in developing single-cell tools for mechanical stimulation and force response. One area of needed improvement is the non-invasive measurement of intracellular elasticity. Elasticity mediates the transmission of forces inside the cell and the deformation experienced by cell regions under an applied force. However, current technology for cell/ECM elasticity measurements is limited to point-sample analysis or requires contact. These are important limitations since cells are heterogeneous, alter their properties upon mechanical perturbation, and need to be studied in 3D microenvironments. This project will develop an all-optical approach to this unmet need. Brillouin cellular microscopy
can map the intracellular elasticity at high resolution, non-perturbatively, without contact in 3D cultures. Brillouin information on cell elasticity will be co-located with fluorescent-based detection of cytoskeletal components and intracellular mechanotransduction. Integration with microfluidic platforms will enable tight control of microenvironment conditions. After instrument validation, I will focus on breast cancer cell migration. Based on preliminary data and literature evidence, I formulated and will test the hypothesis that intracellular elasticity mediates migratio, namely that optimal cell modulus and elasticity polarization are mechanical requirements of the migration machinery and can be used to explain the enhanced motility exhibited by metastatic cells compared to their non-cancerous counterparts. Beyond the cell migration studies, the novel instrumental platform developed and validated during this award, will be broadly applicable as it provides unique quantitative metrics to relate cell- microenvironment mechanical interaction to cell behavior. This K25 award would enable the candidate's transition to research in cellular biomechanics and mechanobiology by complementing his demonstrated expertise in optical technology development with the necessary training in cell biology, microfluidics and ethical research conduct through formal coursework, interaction with mentors and hands-on laboratory training.
描述(由申请人提供):此项目具有先进的光子技术和微流体的整合,以攻击细胞生物力学中的主要未满足挑战。细胞微环境通过提供生化和生物物理刺激的复杂混合物来严格调节细胞功能。在细胞微环境相互作用的组成部分中,生物力学因子的作用被认为是至关重要的。近年来,在开发用于机械刺激和力反应的单细胞工具方面取得了巨大进步。需要改进的一个区域是对细胞内弹性的非侵入性测量。弹性介导了细胞内部力的传播以及细胞区域在施加力下经历的变形。但是,当前用于细胞/ECM弹性测量的技术仅限于点样本分析或需要接触。这些是重要的局限性,因为细胞是异质的,在机械扰动时会改变其特性,并且需要在3D微环境中进行研究。该项目将针对这种未满足的需求开发出一种全光能的方法。布里渊细胞显微镜
可以非扰动地绘制高分辨率的细胞内弹性,而无需3D培养物的接触。 Brillouin有关细胞弹性的信息将通过基于荧光的细胞骨架成分和细胞内机械转导的检测共同分布。与微流体平台的集成将使您能够严格控制微环境条件。仪器验证后,我将重点放在乳腺癌细胞迁移上。根据初步数据和文献证据,我制定了一个假设,即细胞内弹性介导迁移,即,最佳细胞模量和弹性极化是迁移机械的机械要求,并且可以用来解释与非癌症相比转移性细胞所表现出的增强的运动性。除了细胞迁移研究之外,该奖项期间开发和验证的新型仪器平台将非常适用,因为它提供了独特的定量指标,以将细胞微环境机械相互作用与细胞行为相关联。这项K25奖将通过对其在光学技术开发方面的专业知识进行补充,通过正式的课程,与导师的互动和动手实验室培训进行了必要的培训,使候选人能够过渡到细胞生物力学和机械生物学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giuliano Scarcelli其他文献
Giuliano Scarcelli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Giuliano Scarcelli', 18)}}的其他基金
Brillouin confocal microscopy for biomechanical studies of metastatic cascade in 3D microenvironments
用于 3D 微环境中转移级联生物力学研究的布里渊共焦显微镜
- 批准号:
9301503 - 财政年份:2016
- 资助金额:
$ 14.23万 - 项目类别:
Biomechanical understanding of accommodation mechanism with Brillouin microscopy
利用布里渊显微镜对调节机制的生物力学理解
- 批准号:
8664398 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Biomechanical understanding of accommodation mechanism with Brillouin microscopy
利用布里渊显微镜对调节机制的生物力学理解
- 批准号:
8429549 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
- 批准号:
8840585 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
- 批准号:
9057538 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
- 批准号:
8960179 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
- 批准号:
8651437 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
- 批准号:
9265091 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
相似海外基金
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
- 批准号:
8840585 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
- 批准号:
9057538 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
- 批准号:
8960179 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
- 批准号:
8651437 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别:
Imaging cellular biomechanics on-chip in 2D and 3D microenvironments
2D 和 3D 微环境中的片上细胞生物力学成像
- 批准号:
9265091 - 财政年份:2013
- 资助金额:
$ 14.23万 - 项目类别: