Evaluation and Validation of Imaging Biomarkers of Tumor Response to Treatment
肿瘤治疗反应的影像生物标志物的评估和验证
基本信息
- 批准号:8444704
- 负责人:
- 金额:$ 12.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAnimal ModelAnimalsApoptosisBiological MarkersBlood VesselsBreast Cancer TreatmentCategoriesClinicClinicalClinical ResearchClinical TrialsClinical Trials DesignCombined Modality TherapyDataDiseaseERBB2 geneEducational workshopEvaluationGoalsHealthcareHistologyHumanImageImaging TechniquesIndividualInstitute of Medicine (U.S.)LaboratoriesLongitudinal StudiesMagnetic Resonance ImagingMalignant NeoplasmsMammary NeoplasmsMammary TumorigenesisMeasurementMeasuresMedicineMethodologyMethodsMetricMolecularMonitorPatient CarePatientsPhysiologicalPolyomavirusPositron-Emission TomographyProtocols documentationReportingResearchResistanceRoche brand of trastuzumabSimulateStandardizationStressSummary ReportsTechniquesTestingTranslationsValidationXenograft procedureannexin A5anticancer researchbaseclinical careclinically relevantdocetaxelimaging modalityimprovedin vivolapatinibmalignant breast neoplasmmolecular/cellular imagingmouse modelpre-clinicalpreclinical studypublic health relevanceresponsesingle photon emission computed tomographytreatment effecttreatment responsetriple-negative invasive breast carcinomatumortumor growthwater diffusion
项目摘要
DESCRIPTION (provided by applicant): The aims of the proposed research are to critically evaluate, compare and validate selected multi-modality imaging metrics as quantitative (surrogate) biomarkers of the response of breast tumors to specific treatments to provide the scientific basis for their translation into patient management and clinical trials. Recent years have seen a dramatic increase in the range of information available from imaging methods so that a number of techniques are available to quantitatively monitor tumor growth and treatment response. Several of these have been used in both pre-clinical and clinical studies, but with mixed results confounded by lack of standardization, inadequate understanding of underlying mechanisms and absence of appropriate validation to assist their interpretation. We propose to systematically evaluate emerging, clinically-viable imaging metrics in appropriate animal models to establish which combination of methods is most accurate at predicting response to specific treatments that are relevant for breast cancer. The paradigm we have chosen to achieve these ends considers two major categories of human breast cancer, HER2 positive tumors and ER/PR/HER2 triple-negative tumors and both established and emerging therapies. For each category we will assess treatment response by performing longitudinal studies that combine PET, SPECT, and MRI to provide functional assessments of the response of breast tumors to treatment. We will also correlate imaging with histology data to understand the mechanistic underpinnings of the information provided by each type of measurement. We hypothesize that treatment type will determine which imaging metrics are most sensitive to early response. To test this hypothesis we will pursue the following specific aims: 1. [HER2+ cancer] In the BT-474 mouse model of breast cancer with and without resistance to Herceptin (to simulate responders and nonresponders, respectively), measure the effects of treatment response to Herceptin or Herceptin+lapatinib as reported by PET, SPECT, and MRI metrics. This study will also be performed in the polymoma middle T (PyMT) spontaneous mouse model of human breast cancer. 2. [Triple negative cancer] In the MDA-231 mouse model of triple-negative breast cancer with and without resistance to Docetaxel (to simulate responders and nonresponders, respectively), measure the effects of treatment to Docetaxel or Docetaxel+sunitinib as reported by PET, SPECT, and MRI metrics.
描述(由申请人提供):拟议的研究的目的是批判性评估,比较和验证选定的多模式成像指标作为乳腺肿瘤对特定治疗的反应的定量(替代)生物标志物,以提供科学基础,以将其转化为患者管理和临床试验。 近年来,成像方法可获得的信息范围急剧增加,因此可以使用许多技术来定量监测肿瘤生长和治疗反应。其中一些已用于临床前和临床研究中,但由于缺乏标准化,对基本机制的理解不足以及缺乏适当的验证以帮助其解释而混淆。我们建议在适当的动物模型中系统地评估新兴的,临床上可行的成像指标,以确定哪种方法的组合最准确,可以预测对与乳腺癌相关的特定治疗方法的反应。我们选择实现这些目的的范式考虑了人类乳腺癌,HER2阳性肿瘤和ER/PR/HER2三阴性肿瘤的两个主要类别,并且都建立和新兴疗法。对于每个类别,我们将通过进行纵向研究来评估治疗反应,该研究结合了PET,SPECT和MRI,以对乳腺肿瘤对治疗的反应进行功能评估。我们还将将成像与组织学数据相关联,以了解每种测量类型提供的信息的机械基础。我们假设处理类型将确定哪些成像指标对早期响应最敏感。为了检验这一假设,我们将追求以下特定目的:1。[HER2+癌症]在BT-474乳腺癌的小鼠模型中,有或没有对Herceptin的抗性(分别模拟反应者和非反应者),衡量治疗对赫赛普蛋白或Herseptin或Hersectein+ Lapatinib的响应的影响,因为PET,Spect,Spect,Spect,Spect,Spect,Spect,Spect,Spect,Spect,Spect,Spect和Mri Mri Meri and Mri Mericrics和Mri Mri Mericrics和Mri Mri Mericrics。这项研究还将在人类乳腺癌的自发小鼠模型中进行。 2。[三重阴性癌]在三阴性乳腺癌的MDA-231小鼠模型中,有或没有对多西他赛的抗性(分别模拟反应者和无反应者),测量对多西他赛或多西他赛或Docetaxel+sunitinib的影响,PET,SPECT SPECT和MRI MERRICS和MRI MERRICS报告。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas E Yankeelov其他文献
Thomas E Yankeelov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas E Yankeelov', 18)}}的其他基金
Integrating Quantitative Imaging and Biophysical Models to Predict Tumor Growth
整合定量成像和生物物理模型来预测肿瘤生长
- 批准号:
8509990 - 财政年份:2013
- 资助金额:
$ 12.1万 - 项目类别:
Integrating Quantitative Imaging and Biophysical Models to Predict Tumor Growth
整合定量成像和生物物理模型来预测肿瘤生长
- 批准号:
8628808 - 财政年份:2013
- 资助金额:
$ 12.1万 - 项目类别:
Evaluation and Validation of Imaging Biomarkers of Tumor Response to Treatment
肿瘤治疗反应的影像生物标志物的评估和验证
- 批准号:
7782841 - 财政年份:2010
- 资助金额:
$ 12.1万 - 项目类别:
Evaluation and Validation of Imaging Biomarkers of Tumor Response to Treatment
肿瘤治疗反应的影像生物标志物的评估和验证
- 批准号:
8067924 - 财政年份:2010
- 资助金额:
$ 12.1万 - 项目类别:
Evaluation and Validation of Imaging Biomarkers of Tumor Response to Treatment
肿瘤治疗反应的影像生物标志物的评估和验证
- 批准号:
8631054 - 财政年份:2010
- 资助金额:
$ 12.1万 - 项目类别:
Evaluation and Validation of Imaging Biomarkers of Tumor Response to Treatment
肿瘤治疗反应的影像生物标志物的评估和验证
- 批准号:
8212366 - 财政年份:2010
- 资助金额:
$ 12.1万 - 项目类别:
Evaluation of MRI Biomarkers of Breast Cancer Response
乳腺癌反应的 MRI 生物标志物评估
- 批准号:
7590293 - 财政年份:2008
- 资助金额:
$ 12.1万 - 项目类别:
Evaluation of MRI Biomarkers of Breast Cancer Response
乳腺癌反应的 MRI 生物标志物评估
- 批准号:
8020100 - 财政年份:2008
- 资助金额:
$ 12.1万 - 项目类别:
Evaluation of MRI Biomarkers of Breast Cancer Response
乳腺癌反应的 MRI 生物标志物评估
- 批准号:
7761188 - 财政年份:2008
- 资助金额:
$ 12.1万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Behavioral and physiological measurements of hearing in mouse models of Alzheimer's Disease
阿尔茨海默病小鼠模型听力的行为和生理测量
- 批准号:
10647340 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Novel first-in-class Therapeutics for Rheumatoid Arthritis
类风湿关节炎的一流新疗法
- 批准号:
10696749 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Achieving Sustained Control of Inflammation to Prevent Post-Traumatic Osteoarthritis (PTOA)
实现炎症的持续控制以预防创伤后骨关节炎 (PTOA)
- 批准号:
10641225 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Structurally engineered furan fatty acids for the treatment of dyslipidemia and cardiovascular disease
结构工程呋喃脂肪酸用于治疗血脂异常和心血管疾病
- 批准号:
10603408 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 12.1万 - 项目类别: