HIGH-THROUGHPUT IN VIVO SUBCELLULAR-RESOLUTION VERTEBRATE SCREENING PLATFORM
高通量体内亚细胞分辨率脊椎动物筛选平台
基本信息
- 批准号:8477325
- 负责人:
- 金额:$ 38.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-27 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAnimalsBiodistributionBiological AssayBiologyBrainCancer BiologyCardiovascular systemCell LineCellsChemicalsCommunicable DiseasesComplexDevelopmentDiseaseDisease ProgressionDisease modelEmbryoEndocrine systemEnvironmentExtracellular MatrixFailureFiberGene SilencingGenesGeneticGenetic ScreeningGoalsHabitatsHeartImageImmobilizationImmune systemIn VitroInjection of therapeutic agentInjuryKidneyLarvaLeadLiverMammalsMicrofluidicsMicroinjectionsMicrosurgeryModelingNatural regenerationNeoplasm MetastasisNerve DegenerationNervous System PhysiologyNeuraxisNeurobiologyNeuronsOpticsOrganPancreasPathogenesisPharmaceutical PreparationsPharmacologic SubstancePhenotypePhysiologicalPreclinical Drug EvaluationProcessResolutionSpecificitySpeedSpinal cord injuryStagingSystemTechniquesTechnologyTestingTimeToxic effectTranslational ResearchUnited States National Institutes of HealthVertebratesVisionWhole OrganismZebrafishcancer typecellular targetingchemical geneticscostdrug candidatedrug developmentfundamental researchgene functiongenome-widehigh throughput screeninghuman diseasein vivoinnovationmutantregenerativescreeningsmall molecule
项目摘要
DESCRIPTION (provided by applicant): The ability to study whole organisms makes it possible to study complex in vivo processes that cannot be replicated in vitro such as organ development, liver, pancreas, heart, and neuronal regeneration, cancer metastasis, neural degeneration, infectious disease progression, pathogenesis, cardiovascular, immune, endocrine, and nervous system functions. Cells are not transformed and are in their normal physiological environment of cell-cell, extracellular matrix, and other interactions. Microarray studies and in vitro screens using cell lines and millions of combinatorially synthesized compounds have generated thousands of possible genetic targets and drug candidates. Identification of specificity, potency, toxicity, and biodistribution of pharmaceuticals as well as functions of thousands genes on entire organs like kidney, liver, heart, and brain cannot be done in vitro, and require use of in vivo animal models. Currently, there is significant gap between the throughput and capabilities of in vitro and in vivo assays on vertebrates. As a result, during early stages of drug screening and development, pharmaceuticals cannot be tested in vivo. Failure of tests on animals at later stages of development not only costs dearly, but also slows progress significantly. Yet, high-throughput testing of gene functions and compounds using in vivo vertebrate animal models has so far been significantly limited due to the absence of key technologies. Here, we propose a highly transformative technology that will allow, for the first time, large- scale in vivo genetic and chemical screens at cellular resolution on complex organs of vertebrates such as heart, liver, kidney, pancreas, vision, immune system, and central nervous system. This technology can impact a broad spectrum of fields ranging from neurobiology to regenerative biology, and cancer biology. The proposed high-speed whole-animal manipulation, orientation, immobilization, imaging, microsurgery, and injection platform will enable a dramatic increase in the throughput and complexity with which in vivo assays can be performed (~5-10 seconds per animal depending on the observed phenotype and manipulation complexity instead of the 10-30 minutes it currently takes). Our proposal is highly relevant to NIH's roadmap goals as it will allow systematic and unbiased genome-wide vertebrate studies to dramatically accelerate both fundamental and translational research in identification of gene functions as well as in discovery of drug leads. To demonstrate system capabilities, we will perform the first large-scale in vivo chemical screen for regenerating micro-surgically injured spinal-cord fibers.
描述(由申请人提供):研究整个生物体的能力使得在体外过程中研究复杂的过程是可以在体外复制的复杂过程,例如器官发育,肝脏,胰腺,心脏和神经元再生,癌症转移,神经退化,感染性疾病进展,病原体,病原体,免疫,免疫,内部和神经系统的功能。细胞不会转化,并且处于细胞细胞,细胞外基质和其他相互作用的正常生理环境中。微阵列研究和体外筛选使用细胞系和数百万合成化合物的化合物产生了数千种可能的遗传靶标和候选药物。鉴定药物的特异性,效力,毒性和生物分布以及数千个基因在肾脏,肝脏,心脏和大脑等整个器官上的功能,不能在体外完成,并且需要使用体内动物模型。当前,体外和体内脊椎动物的吞吐量和能力之间存在显着差距。结果,在药物筛查和开发的早期阶段,不能在体内测试药物。在后来的发展阶段,对动物的测试失败不仅成本高昂,而且还会大大减慢进展。然而,由于缺乏关键技术,使用体内脊椎动物模型对基因功能和化合物进行了高通量测试已受到显着限制。在这里,我们提出了一种高度变革的技术,该技术将首次允许在脊椎动物的复杂器官(例如心脏,肝脏,肾脏,胰腺,胰腺,视觉,免疫系统和中枢神经系统)的复杂器官上进行大规模的体内遗传和化学筛选。这项技术可以影响从神经生物学到再生生物学和癌症生物学的广泛领域。提出的高速全动物操作,取向,固定,成像,显微手术和注射平台将使可以进行体内测定的吞吐量和复杂性急剧增加(根据观察到的表型和操纵的复杂性,而不是目前的10-30分钟,则可以进行体内测定法(〜5-10秒)。我们的建议与NIH的路线图目标高度相关,因为它将允许系统的和无偏的全基因组脊椎动物研究在鉴定基因功能以及发现药物铅的鉴定方面显着加速基本和转化研究。为了展示系统功能,我们将执行第一个大规模的体内化学筛选,用于再生微表面受伤的脊柱纤维。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehmet Fatih Yanik其他文献
Verfahren zur zelltransfektion mit nukleinsäuren
核转移的影响
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Mehmet Fatih Yanik;Matthew Angel - 通讯作者:
Matthew Angel
Mehmet Fatih Yanik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehmet Fatih Yanik', 18)}}的其他基金
Generating transplantable neurons by in vivo combinatorial screening of transcrip
通过体内转录组合筛选产生可移植神经元
- 批准号:
8337690 - 财政年份:2011
- 资助金额:
$ 38.92万 - 项目类别:
Generating transplantable neurons by in vivo combinatorial screening of transcrip
通过体内转录组合筛选产生可移植神经元
- 批准号:
8142682 - 财政年份:2011
- 资助金额:
$ 38.92万 - 项目类别:
Generating transplantable neurons by in vivo combinatorial screening of transcrip
通过体内转录组合筛选产生可移植神经元
- 批准号:
8912552 - 财政年份:2011
- 资助金额:
$ 38.92万 - 项目类别:
Generating transplantable neurons by in vivo combinatorial screening of transcrip
通过体内转录组合筛选产生可移植神经元
- 批准号:
8508325 - 财政年份:2011
- 资助金额:
$ 38.92万 - 项目类别:
Generating transplantable neurons by in vivo combinatorial screening of transcrip
通过体内转录组合筛选产生可移植神经元
- 批准号:
8712586 - 财政年份:2011
- 资助金额:
$ 38.92万 - 项目类别:
HIGH-THROUGHPUT IN VIVO SUBCELLULAR-RESOLUTION VERTEBRATE SCREENING PLATFORM
高通量体内亚细胞分辨率脊椎动物筛选平台
- 批准号:
8268464 - 财政年份:2010
- 资助金额:
$ 38.92万 - 项目类别:
HIGH-THROUGHPUT IN VIVO SUBCELLULAR-RESOLUTION VERTEBRATE SCREENING PLATFORM
高通量体内亚细胞分辨率脊椎动物筛选平台
- 批准号:
8660716 - 财政年份:2010
- 资助金额:
$ 38.92万 - 项目类别:
HIGH-THROUGHPUT IN VIVO SUBCELLULAR-RESOLUTION VERTEBRATE SCREENING PLATFORM
高通量体内亚细胞分辨率脊椎动物筛选平台
- 批准号:
8150903 - 财政年份:2010
- 资助金额:
$ 38.92万 - 项目类别:
HIGH-THROUGHPUT IN VIVO SUBCELLULAR-RESOLUTION VERTEBRATE SCREENING PLATFORM
高通量体内亚细胞分辨率脊椎动物筛选平台
- 批准号:
8016924 - 财政年份:2010
- 资助金额:
$ 38.92万 - 项目类别:
High-throughput single-cell-resolution genetic and pharmacological screens using
高通量单细胞分辨率遗传和药理学筛选
- 批准号:
8053299 - 财政年份:2009
- 资助金额:
$ 38.92万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
以秀丽隐杆线虫为例探究动物在不同时间尺度行为的神经基础
- 批准号:32300829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
脊椎动物胚胎发育单细胞磷酸化蛋白质组高通量高灵敏度分析新技术新方法
- 批准号:22374084
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新疆旱獭等啮齿动物携带病毒的病原学与病原生态学研究
- 批准号:32300424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Synergistically Target Mitochondria for Heart Failure Treatment
协同靶向线粒体治疗心力衰竭
- 批准号:
10584938 - 财政年份:2023
- 资助金额:
$ 38.92万 - 项目类别:
Protease Resistant Growth Factor Nanoparticles for Chronic Wound Healing
用于慢性伤口愈合的蛋白酶抗性生长因子纳米颗粒
- 批准号:
10593195 - 财政年份:2023
- 资助金额:
$ 38.92万 - 项目类别:
Low-Dose Magneto-Thrombolysis to Expand Stroke Care
低剂量磁溶栓扩大中风治疗范围
- 批准号:
10693650 - 财政年份:2023
- 资助金额:
$ 38.92万 - 项目类别:
Advancement of Prion Protein-Lowering Divalent siRNA Therapy for Prion Disease
朊病毒蛋白降低二价 siRNA 治疗朊病毒病的进展
- 批准号:
10721465 - 财政年份:2023
- 资助金额:
$ 38.92万 - 项目类别:
Postnatal and Prenatal Therapeutic Base Editing for Metabolic Diseases
代谢性疾病的产后和产前治疗碱基编辑
- 批准号:
10668614 - 财政年份:2023
- 资助金额:
$ 38.92万 - 项目类别: