Quality control mechanisms against misfolded rhodopsins in Drosophila.
针对果蝇中错误折叠视紫红质的质量控制机制。
基本信息
- 批准号:8664498
- 负责人:
- 金额:$ 33.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAge-YearsAllelesAmino Acid SubstitutionAnimal ModelAttentionBindingBiologicalBiological AssayBlindnessCellsCytoplasmDevelopmentDiseaseDrosophila genusEmployee StrikesEndoplasmic ReticulumEndoplasmic Reticulum Degradation PathwayGene DosageGene ExpressionGenesGeneticGenetic TranscriptionGoalsHereditary DiseaseHomologous GeneHumanInborn Genetic DiseasesIndividualLongevityMammalian CellMediatingMessenger RNAModelingMutationOutcome StudyPathway interactionsPhosphoric Monoester HydrolasesPhosphorylationProcessPropertyProtein DephosphorylationProteinsQuality ControlRNA BindingRNA InterferenceRNA Recognition MotifRNA SplicingRegulationRetinaRetinalRetinal DegenerationRetinitis PigmentosaRhodopsinRoleSignal PathwaySignal TransductionStressTestingTherapeuticUbiquitinYeastsage relatedendonucleaseendoplasmic reticulum stressflygenome-widehigh throughput analysisinsightinterestmulticatalytic endopeptidase complexmutantnovelnovel therapeuticsoverexpressionphosphatase inhibitorprotective effectprotein complexprotein foldingprotein misfoldingresponsetooltranscription factor
项目摘要
Retinitis Pigmentosa is a group of inherited disorders that show a progressive loss of retinal function. One of the most common causes of Autosomal Dominant Retinitis Pigmentosa (ADRP) are mutations in the rhodopsin gene that disrupt its encoded protein's folding property. Our long-term goal is to understand how cells respond to stress caused by such rhodopsin proteins once they are synthesized in the endoplasmic reticulum (ER). As most cells have robust quality control mechanisms that can help eliminate such misfolded proteins from the ER, a better understanding of these mechanisms may have therapeutic implications. We focus on two specific ER quality control mechanisms that can help suppress retinal degeneration caused by misfolded rhodopsins. First is ER-Associated Degradation (ERAD), which refers to the ubiquitin-mediated degradation of misfolded proteins from the ER. Stimulation of ERAD can suppress retinal degeneration in a Drosophila model for ADRP, but the underlying mechanism remains poorly understood. In addition, ADRP may be suppressed by an intracellular signaling pathway activated by ER-stress, known as the Unfolded Protein Response (UPR). A central branch of the UPR is mediated by the unconventional splicing of xbp1 mRNA in the cytoplasm, leading to the synthesis of an active xbp1 transcription factor. Among the transcription targets of xbp1 include regulators of ERAD. To investigate mechanisms by which ERAD and the UPR suppress retinal degeneration in animal models of ADRP, we plan to use a combination of classical Drosophila genetics, cell biological analysis and high throughput RNAi assays. Specifically, we plan to investigate the precise mechanism by which misfolded rhodopsins are detected by the ERAD machinery and imported into the cytoplasm for degradation. In addition, we plan to study how the xbp1-mediated UPR pathway is regulated. We will test a specific hypothesis where xbp1 mRNA splicing is modulated by a specific phosphatase, and this phosphatase is in turn regulated by a regulatory subunit that binds to xbp1 mRNA. Any new genes or mechanisms identified through this approach will be examined for possible effects on retinal degeneration in a Drosophila model for ADRP, where an endogenous mutation in a rhodopsin encoding gene triggers a dominant form of age-related retinal degeneration. As the fly model shows a striking degree of similarity with the human condition, we believe that a successful outcome of this study may directly influence the development of new strategies against ADRP in humans.
色素性视网膜炎是一组遗传性疾病,显示出视网膜功能的逐渐丧失。常染色体显性视网膜炎色素(ADRP)的最常见原因之一是呈蓝订光蛋白基因中的突变,破坏了其编码蛋白质的折叠特性。我们的长期目标是了解细胞在内质网(ER)中合成的这种视紫红质蛋白引起的压力如何反应。由于大多数细胞具有强大的质量控制机制,可以帮助消除ER中的这种错误折叠的蛋白质,因此对这些机制的更好理解可能具有治疗意义。我们专注于两种特定的ER质量控制机制,可以帮助抑制由错误折叠的视紫红蛋白引起的视网膜变性。首先是与ER相关的降解(ERAD),它指的是泛素介导的蛋白质从ER中脱离错误折叠的降解。刺激ERAD可以抑制ADRP果蝇模型中的视网膜变性,但潜在的机制仍然很少了解。另外,ADRP可以通过ER应力激活的细胞内信号通路抑制,称为展开的蛋白质反应(UPR)。 UPR的中央分支是由XBP1 mRNA在细胞质中的非常规剪接介导的,导致合成活性XBP1转录因子。在XBP1的转录目标中,包括Erad的调节剂。为了研究ADRP动物模型中ERAD和UPR抑制视网膜变性的机制,我们计划使用经典的果蝇遗传学,细胞生物学分析和高吞吐量RNAi分析的组合。具体而言,我们计划研究通过ERAD机械检测到错误折叠的动蛋白的确切机制,并进口到细胞质中以降解。此外,我们计划研究如何调节XBP1介导的UPR途径。我们将检验一个特定的假设,其中XBP1 mRNA剪接由特定的磷酸酶调节,该磷酸酶又受与XBP1 mRNA结合的调节亚基调节。通过这种方法鉴定出的任何新基因或机制,将检查果蝇模型中ADRP视网膜变性的可能影响,其中编码基因的Rhodopsin中的内源性突变触发了与年龄相关的视网膜变性的主要形式。由于苍蝇模型与人类状况相似,因此我们认为这项研究的成功结果可能会直接影响针对人类ADRP的新策略的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HYUNG D RYOO其他文献
HYUNG D RYOO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HYUNG D RYOO', 18)}}的其他基金
Translational control of stress response signaling
应激反应信号的翻译控制
- 批准号:
10552193 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Translation control of stress response and innate immunity
应激反应和先天免疫的翻译控制
- 批准号:
10004111 - 财政年份:2018
- 资助金额:
$ 33.8万 - 项目类别:
Unfolded Protein Response in Eye Development and Disease
眼睛发育和疾病中未折叠的蛋白质反应
- 批准号:
9759937 - 财政年份:2010
- 资助金额:
$ 33.8万 - 项目类别:
Quality control mechanisms against misfolded rhodopsins in Drosophila.
针对果蝇中错误折叠视紫红质的质量控制机制。
- 批准号:
8113397 - 财政年份:2010
- 资助金额:
$ 33.8万 - 项目类别:
Quality control mechanisms against misfolded rhodopsins in Drosophila.
针对果蝇中错误折叠视紫红质的质量控制机制。
- 批准号:
7947938 - 财政年份:2010
- 资助金额:
$ 33.8万 - 项目类别:
Unfolded Protein Response in Drosophila models of Retinitis Pigmentosa
色素性视网膜炎果蝇模型中未折叠的蛋白质反应
- 批准号:
10735578 - 财政年份:2010
- 资助金额:
$ 33.8万 - 项目类别:
Unfolded Protein Response in Eye Development and Disease
眼睛发育和疾病中未折叠的蛋白质反应
- 批准号:
10171856 - 财政年份:2010
- 资助金额:
$ 33.8万 - 项目类别:
Quality control mechanisms against misfolded rhodopsins in Drosophila.
针对果蝇中错误折叠视紫红质的质量控制机制。
- 批准号:
8301711 - 财政年份:2010
- 资助金额:
$ 33.8万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Virus and olfactory system interactions accelerate Alzheimer's disease pathology
病毒和嗅觉系统相互作用加速阿尔茨海默病病理学
- 批准号:
10669880 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Investigating the role of an EIF2B3 variant as an Alzheimer's disease risk modifier
研究 EIF2B3 变体作为阿尔茨海默病风险调节剂的作用
- 批准号:
10680062 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Project 2: Therapeutic Gene Editing for Friedreich's Ataxia
项目 2:弗里德赖希共济失调的治疗性基因编辑
- 批准号:
10668768 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Discovery of apoE4 modulators for Alzheimer’s disease therapy
发现用于治疗阿尔茨海默病的 apoE4 调节剂
- 批准号:
10705701 - 财政年份:2022
- 资助金额:
$ 33.8万 - 项目类别:
Discovery of apoE4 modulators for Alzheimer’s disease therapy
发现用于治疗阿尔茨海默病的 apoE4 调节剂
- 批准号:
10502511 - 财政年份:2022
- 资助金额:
$ 33.8万 - 项目类别: