Bar Domains and Neuronal Membrane Structure
Bar 结构域和神经元膜结构
基本信息
- 批准号:8325094
- 负责人:
- 金额:$ 27.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsArchitectureBindingBinding ProteinsBiological AssayCell membraneCell physiologyCellsCellular NeurobiologyCharacteristicsComplementary DNAComplexComputer Vision SystemsDefectDendritesDevelopmentDiseaseFamilyFilopodiaGenerationsGoalsHippocampus (Brain)Image AnalysisImpairmentIn VitroIndividualIntracellular MembranesKineticsLengthLifeMeasurementMeasuresMedicalMembraneMembrane LipidsMembrane ProteinsMethodologyMicroscopyMolecularMonitorNanostructuresNatural regenerationNeckNerve DegenerationNeuritesNeurodegenerative DisordersNeuronsPharmaceutical PreparationsProcessPropertyProtein BindingProtein Binding DomainProteinsPsyche structureRadialRoleSet proteinShapesSmall Interfering RNASpecificityStructural ProteinStructureSynapsesSystemTertiary Protein StructureVertebral columnWorkbasecell typecellular imagingdrug developmentin vitro Assaynew technologynoveloverexpressionpreferenceprogramsresponseself assembly
项目摘要
DESCRIPTION (provided by applicant): The goal of the proposed work is to systematically explore whether and how proteins that sense and shape the curvature of plasma membranes are responsible for building the intricate dendritic and axonal arbors that distinguish neurons from other cell types. The formation of complex 3-dimensional branched membrane structures is one of the most fundamental properties of neurons that enable them to transmit information between neurons and from neurons to other cell types. The ability of selected proteins to sense membrane curvature during this differentiation process is important as defects in proteins, such as Oligophrenin and srGAP2, that can bind to and shape lipid membranes cause neurodegenerative diseases. Our proposal aims to develop and execute a scalable experimental strategy to understand the process of arbor formation by focusing on a family of Bar domain containing proteins that are known from in vitro studies to be able to bind to and shape curved membranes. We will systematically investigate their function in generating the branched extended plasma membrane architecture of neurons. Currently available in vitro assays and structural studies of proteins with membrane binding domains can determine the radius of the membrane curvature that results from the formation of oligomers by curvature sensing proteins. Using this approach, proteins have been identified that sense and shape membranes with positive and negative curvatures. Nevertheless, it is difficult from these assays to know to which curved intracellular membranes these proteins may bind, and if or how they act dynamically to generate distinct types of curved plasma membranes in a living cell. We developed a novel assay to investigate curvature dependent processes that is based on fabricated nanostructures that trigger plasma membrane curvature in living cells. Specifically, our project will deliver a new scalable assay based on these nanostructures that allows one to measure in living cells the intracellular membrane localization and the curvature preference as well as the dynamic assembly, disassembly and exchange rate of curvature sensing membrane binding proteins. Our initial studies already identified and characterized a key regulator that binds to positively curved plasma membranes and is critically involved in controlling neuronal architecture. We have combined this approach with parallel high-throughput live-cell imaging and automated image analysis of cultured hippocampal neurons that enables us to systematically analyze the cellular roles of these same Bar domain binding proteins in controlling the neuronal architecture. At the center of our work is the development of this synergistic dual experimental approach that can ultimately be used as an unbiased and systematic platform to investigate the neuronal roles of a large number of putative neuronal membrane binding proteins. Together, our project will provide a molecular framework to understand the program used by neurons to create the vast repertoire of different neuronal architectures.
描述(由申请人提供):拟议工作的目的是系统地探讨质膜的曲率是否以及如何构建质膜的曲率是否负责构建将神经元与其他细胞类型区分开的复杂的树突状和轴突轴。复杂的3维支膜结构的形成是神经元中最基本的特性之一,使它们能够在神经元和神经元之间传输信息到其他细胞类型。在这种分化过程中,选定的蛋白在这种分化过程中感知膜曲率的能力很重要,因为蛋白质(例如寡素和SRGAP2)的缺陷可以与脂质膜结合并塑造脂质膜引起神经退行性疾病。我们的建议旨在通过专注于一个含有蛋白质的蛋白质的家族来制定和执行可扩展的实验策略,以了解乔木形成的过程,这些蛋白质在体外研究中已知,以便能够结合并塑造弯曲的膜。我们将系统地研究它们在产生神经元的分支扩展质膜结构时的功能。 目前可在具有膜结合结构域的蛋白质的体外测定和结构研究可以确定膜曲率的半径,而膜曲率的半径是由曲率传感蛋白通过寡聚物形成而导致的。使用这种方法,已经确定蛋白质具有正曲率和负曲率的感觉和塑造膜。然而,从这些测定中很难知道这些蛋白可能结合的弯曲细胞内膜,以及它们是否动态起作用以产生活细胞中不同类型的弯曲质膜。 我们开发了一种新的测定法,以研究曲率依赖性过程,该过程基于触发活细胞中质膜曲率的制造纳米结构。具体而言,我们的项目将基于这些纳米结构提供新的可扩展测定法,该测定法可以在活细胞中测量细胞内膜定位,曲率偏好以及动态组装,拆卸和汇率汇率的曲率感测膜结合蛋白。我们的最初研究已经确定并表征了与正面弯曲的质膜结合的关键调节剂,并且与控制神经元结构有关。我们已经将这种方法与平行的高通量活细胞成像和对培养的海马神经元的自动图像分析相结合,使我们能够系统地分析这些相同的BAR结构域结合蛋白在控制神经元结构中的细胞作用。我们工作的中心是这种协同双重实验方法的发展,该方法最终可以用作一个无偏的系统平台,以研究大量推定的神经元膜结合蛋白的神经元作用。我们的项目将共同提供一个分子框架,以了解神经元用来创建不同神经元体系结构的曲目的程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TOBIAS MEYER其他文献
TOBIAS MEYER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TOBIAS MEYER', 18)}}的其他基金
Decision points to enter and exit the human cell cycle
进入和退出人体细胞周期的决策点
- 批准号:
9270039 - 财政年份:2016
- 资助金额:
$ 27.42万 - 项目类别:
2011 Gradient Sensing and Directed Cell Migration Gordon Research Conference
2011 梯度传感和定向细胞迁移戈登研究会议
- 批准号:
8128064 - 财政年份:2011
- 资助金额:
$ 27.42万 - 项目类别:
Control of Hedgehog Signal Transduction by Neuropilin
Neuropilin 对 Hedgehog 信号转导的控制
- 批准号:
8620669 - 财政年份:2011
- 资助金额:
$ 27.42万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 27.42万 - 项目类别:
Deciphering the Glycan Code in Human Alzheimer's Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
- 批准号:
10704673 - 财政年份:2023
- 资助金额:
$ 27.42万 - 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 27.42万 - 项目类别:
An Autonomous Rapidly Adaptive Multiphoton Microscope for Neural Recording and Stimulation
用于神经记录和刺激的自主快速自适应多光子显微镜
- 批准号:
10739050 - 财政年份:2023
- 资助金额:
$ 27.42万 - 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 27.42万 - 项目类别: