Mechanisms of CRISPR Interference
CRISPR 干扰机制
基本信息
- 批准号:8424275
- 负责人:
- 金额:$ 27.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-22 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:AnatomyAntibiotic ResistanceArchaeaAreaBacteriaBacterial InfectionsBacteriophagesBase PairingBase SequenceBindingBiochemicalBiogenesisBiological AssayBiological ModelsChromosome DeletionClinicalCluster AnalysisCommunicable DiseasesDNADefectDissectionDouble-Stranded RNAEubacteriumEukaryotaGenesGeneticGenomeGenus staphylococcusGoalsGuide RNAHealthHorizontal Gene TransferHumanImmunityIn VitroIndividualLengthMobile Genetic ElementsMolecularMolecular GeneticsOrganismPathway interactionsPlasmidsProcessPropertyProteinsRNARNA InterferenceRNA Interference PathwayRNA ProcessingResearchResearch DesignRibonucleoproteinsRoleRouteSmall RNASpecific qualifier valueSpecificityStagingStaphylococcus aureusStaphylococcus epidermidisStructureSystemTranscriptVirusWorkabstractingbasefascinategene functiongenetic analysisgenetic elementin vivoinfancymutantnovelparticlepathogenplasmid DNApreventresearch studyresistance mechanismtool
项目摘要
Project Summary/Abstract
Many organisms exploit the base-pairing potential of RNA and DNA to enable sequence-based resistance mechanisms against viruses and mobile genetic elements. The best known of these mechanisms, RNA interference (RNAi), uses double-stranded RNA to trigger the silencing of specific genes. However, this mechanism has only been documented in eukaryotes. More recently, clustered regularly interspaced, short, palindromic repeat (CRISPR) loci, present in the genomes of many eubacteria and nearly all archaea, have been shown to confer adaptive, heritable, sequence-based immunity against phages. The repeats and spacers present in CRISPR loci encode CRISPR RNAs (crRNAs) that are processed from longer precursor transcripts and serve as guides for this interference pathway. CRISPR loci are accompanied by a set of cas (CRISPR-associated) genes that encode protein components of the underlying enzymatic machinery. However, the molecular mechanisms of crRNA-directed interference are almost completely uncharacterized.
We aim to uncover the mechanistic basis for CRISPR interference. We are using the gram-positive pathogen Staphylococcus epidermidis as a model system because of its clinical importance and experimental tractability. Already our work has yielded three major advances: (i) CRISPR loci can function to limit the spread of conjugative plasmids that confer antibiotic resistance in S. epidermidis and Staphylococcus aureus; (ii) the CRISPR pathway in S. epidermidis directly targets incoming DNA and is therefore fundamentally distinct from RNAi; and (iii) crRNAs distinguish untargeted "self" DNA (the CRISPR locus) from targeted "non-self" DNA (plasmids and phage genomes) by differential base pairing outside of the spacer region. Our work has advanced our understanding of CRISPR interference, suggested routes towards limiting the spread of antibiotic resistance, validated our selection of S. epidermidis as a model system, and resulted in many strains, plasmids, and assays that are ideal for in-depth analyses of this novel and fascinating pathway.
We anticipate that our prospects for exploiting the CRISPR pathway in practical and applied realms will advance in parallel with our understanding of the underlying mechanisms. Accordingly, our proposed studies are designed to uncover new and fundamental aspects of CRISPR interference in S. epidermidis. Importantly, we will combine in vivo and in vitro approaches and capitalize on the synergies between them. In particular, we will (i) define the functional anatomy of the repeat/spacer region and the crRNAs that they encode; (ii) identify and characterize other loci (including any that lie outside of the cas locus) that are required for interference; and (iii) characterize crRNA-containing ribonucleoproteins (crRNPs) and define their properties, components, activities, and precursor-product relationships. This work will clarify the molecular basis of CRISPR interference and illuminate routes toward tapping its potential in the critical battle against antibiotic resistance and bacterial infection.
项目概要/摘要
许多生物体利用 RNA 和 DNA 的碱基配对潜力来实现针对病毒和移动遗传元件的基于序列的抵抗机制。这些机制中最著名的是 RNA 干扰 (RNAi),它使用双链 RNA 触发特定基因的沉默。然而,这种机制仅在真核生物中被记录。最近,许多真细菌和几乎所有古细菌基因组中存在的成簇规则间隔、短回文重复(CRISPR)基因座已被证明能够赋予针对噬菌体的适应性、可遗传、基于序列的免疫力。 CRISPR 位点中存在的重复序列和间隔区编码 CRISPR RNA (crRNA),这些 RNA 由较长的前体转录物加工而成,并充当该干扰途径的指导。 CRISPR 位点伴随着一组 cas(CRISPR 相关)基因,这些基因编码潜在酶促机制的蛋白质成分。然而,crRNA 定向干扰的分子机制几乎完全未知。
我们的目标是揭示 CRISPR 干扰的机制基础。我们使用革兰氏阳性病原体表皮葡萄球菌作为模型系统,因为它具有临床重要性和实验易处理性。我们的工作已经取得了三项重大进展:(i) CRISPR 位点可以限制接合质粒的传播,从而赋予表皮葡萄球菌和金黄色葡萄球菌抗生素抗性; (ii) 表皮葡萄球菌中的 CRISPR 途径直接靶向传入的 DNA,因此与 RNAi 根本不同; (iii) crRNA 通过间隔区外的差异碱基配对区分非靶向“自身”DNA(CRISPR 位点)与靶向“非自身”DNA(质粒和噬菌体基因组)。我们的工作增进了我们对 CRISPR 干扰的理解,提出了限制抗生素耐药性传播的途径,验证了我们对表皮葡萄球菌作为模型系统的选择,并产生了许多适合深入分析的菌株、质粒和检测方法这条新颖而迷人的道路。
我们预计,随着我们对潜在机制的理解,我们在实际和应用领域中利用 CRISPR 途径的前景将会不断进步。因此,我们提出的研究旨在揭示表皮葡萄球菌中 CRISPR 干扰的新的基本方面。重要的是,我们将结合体内和体外方法,并利用它们之间的协同作用。特别是,我们将 (i) 定义重复/间隔区及其编码的 crRNA 的功能解剖结构; (ii) 识别和表征干扰所需的其他基因座(包括位于 CAS 基因座之外的任何基因座); (iii) 表征含 crRNA 的核糖核蛋白 (crRNP) 并定义其特性、成分、活性和前体-产物关系。这项工作将阐明 CRISPR 干扰的分子基础,并阐明在对抗抗生素耐药性和细菌感染的关键斗争中挖掘其潜力的途径。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Primary processing of CRISPR RNA by the endonuclease Cas6 in Staphylococcus epidermidis.
- DOI:10.1016/j.febslet.2015.09.005
- 发表时间:2015-10-07
- 期刊:
- 影响因子:3.5
- 作者:Wakefield N;Rajan R;Sontheimer EJ
- 通讯作者:Sontheimer EJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERIK J. SONTHEIMER其他文献
ERIK J. SONTHEIMER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERIK J. SONTHEIMER', 18)}}的其他基金
Advanced Delivery Platforms for Base Editing In Vivo
用于体内碱基编辑的先进交付平台
- 批准号:
10682172 - 财政年份:2023
- 资助金额:
$ 27.31万 - 项目类别:
Enhancing Genome Editing Technology with Natural Cas9 Inhibitors
利用天然 Cas9 抑制剂增强基因组编辑技术
- 批准号:
10092186 - 财政年份:2018
- 资助金额:
$ 27.31万 - 项目类别:
Engineered Cas9 Nucleases with Single-Genomic-Site Precision for CYBB Correction
用于 CYBB 校正的具有单基因组位点精度的工程化 Cas9 核酸酶
- 批准号:
9272917 - 财政年份:2016
- 资助金额:
$ 27.31万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
9021492 - 财政年份:2015
- 资助金额:
$ 27.31万 - 项目类别:
Mechanisms of Sequence-Based Resistance to Viruses and Plasmids in Eubacteria
真细菌基于序列的病毒和质粒抗性机制
- 批准号:
7748988 - 财政年份:2008
- 资助金额:
$ 27.31万 - 项目类别:
Mechanisms of Sequence-Based Resistance to Viruses and Plasmids in Eubacteria
真细菌基于序列的病毒和质粒抗性机制
- 批准号:
7600253 - 财政年份:2008
- 资助金额:
$ 27.31万 - 项目类别:
Improvement of RNAi efficacy by blocking RNAi inhibitors
通过阻断 RNAi 抑制剂提高 RNAi 功效
- 批准号:
7109912 - 财政年份:2006
- 资助金额:
$ 27.31万 - 项目类别:
相似国自然基金
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙醇脱氢酶AdhB介导肺炎链球菌抗生素耐药性的机制研究
- 批准号:32300154
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鸭肠道菌群抗生素耐药性分布及替抗噬菌体内溶素鉴定研究
- 批准号:32360830
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
胞外DNA对厌氧颗粒污泥抗生素耐药性转移的影响及作用机制
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Mechanism of Translation Initiation on Leaderless mRNAs
无领导者 mRNA 的翻译起始机制
- 批准号:
10593807 - 财政年份:2022
- 资助金额:
$ 27.31万 - 项目类别:
The mycobiota, bone marrow transplantation, and clinical outcomes
真菌群、骨髓移植和临床结果
- 批准号:
10415200 - 财政年份:2021
- 资助金额:
$ 27.31万 - 项目类别:
The mycobiota, bone marrow transplantation, and clinical outcomes
真菌群、骨髓移植和临床结果
- 批准号:
10303678 - 财政年份:2021
- 资助金额:
$ 27.31万 - 项目类别:
The Function of Small RNA-Based viral Defense System in E. coli
大肠杆菌中基于小RNA的病毒防御系统的功能
- 批准号:
10388674 - 财政年份:2021
- 资助金额:
$ 27.31万 - 项目类别: