Mechanisms of CRISPR Interference
CRISPR 干扰机制
基本信息
- 批准号:8424275
- 负责人:
- 金额:$ 27.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-22 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:AnatomyAntibiotic ResistanceArchaeaAreaBacteriaBacterial InfectionsBacteriophagesBase PairingBase SequenceBindingBiochemicalBiogenesisBiological AssayBiological ModelsChromosome DeletionClinicalCluster AnalysisCommunicable DiseasesDNADefectDissectionDouble-Stranded RNAEubacteriumEukaryotaGenesGeneticGenomeGenus staphylococcusGoalsGuide RNAHealthHorizontal Gene TransferHumanImmunityIn VitroIndividualLengthMobile Genetic ElementsMolecularMolecular GeneticsOrganismPathway interactionsPlasmidsProcessPropertyProteinsRNARNA InterferenceRNA Interference PathwayRNA ProcessingResearchResearch DesignRibonucleoproteinsRoleRouteSmall RNASpecific qualifier valueSpecificityStagingStaphylococcus aureusStaphylococcus epidermidisStructureSystemTranscriptVirusWorkabstractingbasefascinategene functiongenetic analysisgenetic elementin vivoinfancymutantnovelparticlepathogenplasmid DNApreventresearch studyresistance mechanismtool
项目摘要
Project Summary/Abstract
Many organisms exploit the base-pairing potential of RNA and DNA to enable sequence-based resistance mechanisms against viruses and mobile genetic elements. The best known of these mechanisms, RNA interference (RNAi), uses double-stranded RNA to trigger the silencing of specific genes. However, this mechanism has only been documented in eukaryotes. More recently, clustered regularly interspaced, short, palindromic repeat (CRISPR) loci, present in the genomes of many eubacteria and nearly all archaea, have been shown to confer adaptive, heritable, sequence-based immunity against phages. The repeats and spacers present in CRISPR loci encode CRISPR RNAs (crRNAs) that are processed from longer precursor transcripts and serve as guides for this interference pathway. CRISPR loci are accompanied by a set of cas (CRISPR-associated) genes that encode protein components of the underlying enzymatic machinery. However, the molecular mechanisms of crRNA-directed interference are almost completely uncharacterized.
We aim to uncover the mechanistic basis for CRISPR interference. We are using the gram-positive pathogen Staphylococcus epidermidis as a model system because of its clinical importance and experimental tractability. Already our work has yielded three major advances: (i) CRISPR loci can function to limit the spread of conjugative plasmids that confer antibiotic resistance in S. epidermidis and Staphylococcus aureus; (ii) the CRISPR pathway in S. epidermidis directly targets incoming DNA and is therefore fundamentally distinct from RNAi; and (iii) crRNAs distinguish untargeted "self" DNA (the CRISPR locus) from targeted "non-self" DNA (plasmids and phage genomes) by differential base pairing outside of the spacer region. Our work has advanced our understanding of CRISPR interference, suggested routes towards limiting the spread of antibiotic resistance, validated our selection of S. epidermidis as a model system, and resulted in many strains, plasmids, and assays that are ideal for in-depth analyses of this novel and fascinating pathway.
We anticipate that our prospects for exploiting the CRISPR pathway in practical and applied realms will advance in parallel with our understanding of the underlying mechanisms. Accordingly, our proposed studies are designed to uncover new and fundamental aspects of CRISPR interference in S. epidermidis. Importantly, we will combine in vivo and in vitro approaches and capitalize on the synergies between them. In particular, we will (i) define the functional anatomy of the repeat/spacer region and the crRNAs that they encode; (ii) identify and characterize other loci (including any that lie outside of the cas locus) that are required for interference; and (iii) characterize crRNA-containing ribonucleoproteins (crRNPs) and define their properties, components, activities, and precursor-product relationships. This work will clarify the molecular basis of CRISPR interference and illuminate routes toward tapping its potential in the critical battle against antibiotic resistance and bacterial infection.
项目摘要/摘要
许多生物体利用RNA和DNA的碱基生产潜力来实现基于序列的抗药性机制,以对病毒和移动遗传元素进行抑制。这些机制中最著名的RNA干扰(RNAI)使用双链RNA来触发特定基因的沉默。但是,这种机制仅在真核生物中被记录。最近,在许多Eubacteria的基因组中存在的定期间隔,短,短,allindromic重复(CRISPR)基因座和几乎所有古细菌都显示出可赋予适应性的,可遗传的,基于序列的免疫力,以抗噬菌体。 CRISPR基因座中存在的重复和间隔者编码CRISPR RNA(CRRNA),它们是从较长的前体转录本处理的,并作为此干扰途径的指南。 CRISPR基因座伴随着一组CAS(CRISPR相关)基因,它们编码了基础酶促机制的蛋白质成分。然而,CRRNA指导干扰的分子机制几乎完全没有表征。
我们旨在发现CRISPR干扰的机理基础。由于其临床重要性和实验性障碍性,我们将革兰氏阳性病原体葡萄球菌作为模型系统。我们的工作已经产生了三个主要进步:(i)CRISPR基因座可以限制赋予表皮链球菌和金黄色葡萄球菌抗生素耐药性的共轭质粒的扩散; (ii)表皮链球菌中的CRISPR途径直接靶向传入的DNA,因此从根本上与RNAi不同; (iii)CRRNA通过在间隔区域外部的差分基碱基对将非靶向的“自我” DNA(CRISPR基因座)与靶向的“非自身” DNA(质粒和噬菌体基因组)区分开。我们的工作提高了我们对CRISPR干扰的理解,建议途径限制抗生素耐药性的传播,验证了我们将表皮链球菌作为模型系统的选择,并导致了许多菌株,质粒和测定方法,这些菌株,质粒和测定方法是对这项新颖分析的深入分析的理想之选。
我们预计,在实用领域和应用领域中利用CRISPR途径的前景将与我们对基本机制的理解并行前进。因此,我们提出的研究旨在揭示CRISPR干扰链球菌的新和基本方面。重要的是,我们将结合体内和体外方法,并利用它们之间的协同作用。特别是,我们将(i)定义重复/间隔区域的功能解剖结构以及它们编码的CRRNA; (ii)识别并表征干扰所需的其他基因座(包括在CAS基因座之外的任何位置); (iii)表征含CRRNA的核糖核蛋白(CRRNP),并定义其特性,成分,活动和前体产物关系。这项工作将阐明CRISPR干扰的分子基础,并阐明在与抗生素耐药性和细菌感染的重要战斗中挖掘其潜力的途径。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Primary processing of CRISPR RNA by the endonuclease Cas6 in Staphylococcus epidermidis.
- DOI:10.1016/j.febslet.2015.09.005
- 发表时间:2015-10-07
- 期刊:
- 影响因子:3.5
- 作者:Wakefield N;Rajan R;Sontheimer EJ
- 通讯作者:Sontheimer EJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERIK J. SONTHEIMER其他文献
ERIK J. SONTHEIMER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERIK J. SONTHEIMER', 18)}}的其他基金
Advanced Delivery Platforms for Base Editing In Vivo
用于体内碱基编辑的先进交付平台
- 批准号:
10682172 - 财政年份:2023
- 资助金额:
$ 27.31万 - 项目类别:
Enhancing Genome Editing Technology with Natural Cas9 Inhibitors
利用天然 Cas9 抑制剂增强基因组编辑技术
- 批准号:
10092186 - 财政年份:2018
- 资助金额:
$ 27.31万 - 项目类别:
Engineered Cas9 Nucleases with Single-Genomic-Site Precision for CYBB Correction
用于 CYBB 校正的具有单基因组位点精度的工程化 Cas9 核酸酶
- 批准号:
9272917 - 财政年份:2016
- 资助金额:
$ 27.31万 - 项目类别:
Center for 3D Structure and Physics of the Genome
基因组 3D 结构和物理中心
- 批准号:
9021492 - 财政年份:2015
- 资助金额:
$ 27.31万 - 项目类别:
Mechanisms of Sequence-Based Resistance to Viruses and Plasmids in Eubacteria
真细菌基于序列的病毒和质粒抗性机制
- 批准号:
7748988 - 财政年份:2008
- 资助金额:
$ 27.31万 - 项目类别:
Mechanisms of Sequence-Based Resistance to Viruses and Plasmids in Eubacteria
真细菌基于序列的病毒和质粒抗性机制
- 批准号:
7600253 - 财政年份:2008
- 资助金额:
$ 27.31万 - 项目类别:
Improvement of RNAi efficacy by blocking RNAi inhibitors
通过阻断 RNAi 抑制剂提高 RNAi 功效
- 批准号:
7109912 - 财政年份:2006
- 资助金额:
$ 27.31万 - 项目类别:
相似国自然基金
基于高通量测序和培养组学的伴侣动物-人抗生素抗性基因分布特征及传播研究
- 批准号:82373646
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
手性酰胺类农药污染的农业土壤中抗生素抗性基因传播扩散的对映选择性机制
- 批准号:42377238
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
猪粪水热炭对红壤-蔬菜系统中抗生素抗性基因的风险控制及其机理
- 批准号:42307038
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蚯蚓-菌根协同消减抗生素抗性基因的微生物驱动机制
- 批准号:32301448
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物炭对厌氧膜生物反应器抑制畜禽养殖废水中抗生素抗性基因的调控作用和机制
- 批准号:52300210
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanism of Translation Initiation on Leaderless mRNAs
无领导者 mRNA 的翻译起始机制
- 批准号:
10593807 - 财政年份:2022
- 资助金额:
$ 27.31万 - 项目类别:
The mycobiota, bone marrow transplantation, and clinical outcomes
真菌群、骨髓移植和临床结果
- 批准号:
10303678 - 财政年份:2021
- 资助金额:
$ 27.31万 - 项目类别:
The mycobiota, bone marrow transplantation, and clinical outcomes
真菌群、骨髓移植和临床结果
- 批准号:
10415200 - 财政年份:2021
- 资助金额:
$ 27.31万 - 项目类别:
The Function of Small RNA-Based viral Defense System in E. coli
大肠杆菌中基于小RNA的病毒防御系统的功能
- 批准号:
10388674 - 财政年份:2021
- 资助金额:
$ 27.31万 - 项目类别: