Applications of Multi-Criteria Optimization (AMCO) to Cancer Simulation Modeling
多标准优化 (AMCO) 在癌症模拟建模中的应用
基本信息
- 批准号:8115790
- 负责人:
- 金额:$ 17.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-24 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAwardCalibrationCancer BiologyCancer ModelClinical DataClinical TrialsColorectal CancerCommunitiesComplexComputer SimulationComputer softwareComputersDataDecision AnalysisDevelopmentDisease modelDoctor of PhilosophyEngineeringEnrollmentEthicsEventGeneral HospitalsGoalsGrowthGuidelinesHealth PolicyHealthcareHybridsInstitutesInstitutionInternetInterventionK-Series Research Career ProgramsLanguageLifeMalignant NeoplasmsMalignant neoplasm of lungMassachusettsMeasuresMentorsMentorshipMethodologyMethodsModelingNatural HistoryNeoplasm MetastasisOutcomeOutcomes ResearchPerformancePhysicsPoliciesPolicy MakerPolymersProbabilityProceduresProcessPublic HealthRandomized Clinical TrialsResearchResearch PersonnelResearch TrainingSamplingScienceScreening for cancerSenior ScientistSpace ModelsSpeedStudy modelsTechniquesTechnology AssessmentTestingTimeTrainingYincareercareer developmentdensitydesigndesign and constructionexperiencefollow-upimprovedinstructormedical schoolsmodel developmentmodels and simulationmortalityphysical scienceprogramspublic health relevancerandomized trialsimulationskillssymposiumtooltumor growthtumor registry
项目摘要
DESCRIPTION (provided by applicant): Cancer screening programs are increasingly evaluated with simulation models because they allow health policy makers to consider scenarios that could not be evaluated by randomized clinical trials for practical, financial or ethical reasons. However, few of these models employ rigorous mathematical methods for model calibration. Calibration of cancer screening simulation models to existing clinical data is vital to accurate model prediction. The applicant's immediate goal is to adapt, extend, and promote the use of multi-criteria optimization techniques to improve the calibration of simulation models for cancer screening policy prediction and planning. The applicant, Chung Yin Kong, PhD, is a senior scientist at the Massachusetts General Hospital's Institute for Technology Assessment (ITA) and an instructor at Harvard Medical School. He is trained in Physics (BS) and Polymer Science and Engineering (PhD). This proposed research is tailored to utilize his computer modeling background in physical science as well as the numerous simulation projects at the ITA to test his hypotheses for improving the design and construction of cancer screening models with multi-criteria optimization techniques. The specific aims of the research plan are: (1) to adapt multi-criteria optimization to provide automated procedures for model calibration. As an example, optimization algorithms will be applied to and evaluated with two existing microsimulation models at the ITA: the Lung Cancer Policy Model (LCPM) and the Simulation Model of Colorectal Cancer (SimCRC) model; (2) to extend the use of multi-criteria optimization techniques to aid the design of the underlying cancer biology components in the models and to improve computational speed; (3) to promote the use of multi-criteria optimization techniques among cancer screening modelers. The experience of adapting and extending these techniques will be developed into a calibration platform with instructional diagrams, tutorials, and software modules, which will be distributed on the Internet and at scientific conferences. The end results of the proposed project will improve the speed of both the calibration process and the simulation models themselves. The proposed training plan includes mentoring, coursework, and career development activities preparing him to undertake the proposed research and to fully-transition into the field of cancer simulation modeling. The research and training of this proposed project will be performed under the mentorship of Dr. G. Scott Gazelle, an internationally known expert in cancer outcome research and decision analysis science. The applicant's long term career goal is to become a leader in developing state-of-the-art simulation methods for disease modeling. This award will advance the applicant's academic career and help him to achieve his goal to be a productive, independent investigator.
PUBLIC HEALTH RELEVANCE: This research is relevant to public health because it improves the accuracy of simulation models for cancer screening policy prediction and planning.
描述(由申请人提供):癌症筛查计划越来越多地使用模拟模型进行评估,因为它们允许卫生政策制定者考虑由于实际、财务或伦理原因而无法通过随机临床试验评估的情况。然而,这些模型很少采用严格的数学方法来进行模型校准。根据现有临床数据校准癌症筛查模拟模型对于准确的模型预测至关重要。申请人的近期目标是适应、扩展和推广多标准优化技术的使用,以改进癌症筛查政策预测和规划的模拟模型的校准。申请人Chung Yin Kong博士是麻省总医院技术评估研究所(ITA)的资深科学家,也是哈佛医学院的讲师。他接受过物理学(BS)和高分子科学与工程(PhD)培训。这项拟议的研究是利用他在物理科学方面的计算机建模背景以及 ITA 的众多模拟项目来测试他的假设,以通过多标准优化技术改进癌症筛查模型的设计和构建。该研究计划的具体目标是:(1)采用多标准优化,为模型校准提供自动化程序。例如,优化算法将应用于 ITA 现有的两个微观模拟模型并进行评估:肺癌政策模型 (LCPM) 和结直肠癌模拟模型 (SimCRC); (2) 扩展多标准优化技术的使用,以帮助设计模型中的基础癌症生物学组件并提高计算速度; (3) 促进癌症筛查建模者使用多标准优化技术。适应和扩展这些技术的经验将被开发成一个带有教学图、教程和软件模块的校准平台,并将在互联网和科学会议上分发。拟议项目的最终结果将提高校准过程和仿真模型本身的速度。拟议的培训计划包括指导、课程作业和职业发展活动,让他做好准备进行拟议的研究并完全过渡到癌症模拟建模领域。该拟议项目的研究和培训将在国际知名癌症结果研究和决策分析科学专家 G. Scott Gazelle 博士的指导下进行。申请人的长期职业目标是成为开发最先进的疾病建模模拟方法的领导者。该奖项将促进申请人的学术生涯,并帮助他实现成为一名富有成效的独立研究者的目标。
公共健康相关性:这项研究与公共健康相关,因为它提高了癌症筛查政策预测和规划的模拟模型的准确性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chung Yin Kong其他文献
Chung Yin Kong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chung Yin Kong', 18)}}的其他基金
Modeling Best Approaches for Cardiovascular Disease Prevention in Cancer Survivors
模拟癌症幸存者心血管疾病预防的最佳方法
- 批准号:
10608446 - 财政年份:2023
- 资助金额:
$ 17.25万 - 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10317717 - 财政年份:2021
- 资助金额:
$ 17.25万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10654616 - 财政年份:2021
- 资助金额:
$ 17.25万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10317359 - 财政年份:2021
- 资助金额:
$ 17.25万 - 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10450181 - 财政年份:2021
- 资助金额:
$ 17.25万 - 项目类别:
Optimizing Lung Cancer Screening in Cancer Survivors
优化癌症幸存者的肺癌筛查
- 批准号:
10451668 - 财政年份:2021
- 资助金额:
$ 17.25万 - 项目类别:
Optimizing Lung Cancer Screening Nodule Evaluation
优化肺癌筛查结节评估
- 批准号:
10668248 - 财政年份:2021
- 资助金额:
$ 17.25万 - 项目类别:
Comparative Modeling of Lung Cancer Control Policies
肺癌控制政策的比较模型
- 批准号:
8548101 - 财政年份:2010
- 资助金额:
$ 17.25万 - 项目类别:
Comparative Modeling of Lung Cancer Control Policies
肺癌控制政策的比较模型
- 批准号:
8799653 - 财政年份:2010
- 资助金额:
$ 17.25万 - 项目类别:
Applications of Multi-Criteria Optimization (AMCO) to Cancer Simulation Modeling
多标准优化 (AMCO) 在癌症模拟建模中的应用
- 批准号:
8298239 - 财政年份:2009
- 资助金额:
$ 17.25万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
- 批准号:
10641060 - 财政年份:2023
- 资助金额:
$ 17.25万 - 项目类别:
Optimizing the Diagnostic Strategy for Acute Musculoskeletal Infections in Children: Evaluating the Clinical Performance and Comparative Cost of a Noninvasive Diagnostic Technique
优化儿童急性肌肉骨骼感染的诊断策略:评估无创诊断技术的临床表现和比较成本
- 批准号:
10664298 - 财政年份:2023
- 资助金额:
$ 17.25万 - 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
$ 17.25万 - 项目类别:
Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
- 批准号:
10589666 - 财政年份:2023
- 资助金额:
$ 17.25万 - 项目类别:
Information-Theoretic Surprise-Driven Approach to Enhance Decision Making in Healthcare
信息论惊喜驱动方法增强医疗保健决策
- 批准号:
10575550 - 财政年份:2023
- 资助金额:
$ 17.25万 - 项目类别: