Basal Ganglia Pathways for Stopping and Switching
基底神经节通路的停止和切换
基本信息
- 批准号:8630262
- 负责人:
- 金额:$ 37.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-26 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcetylcholineAffectAreaAttentionAttention deficit hyperactivity disorderBasal GangliaBehaviorBehavioralBehavioral inhibitionBrainCell NucleusCellsClinicalCognitiveCorpus striatum structureCuesDataDiseaseDopamineDrug AddictionElectrophysiology (science)Equus caballusEventFailureGenerationsGilles de la Tourette syndromeGoalsHumanIndividualInvestigationLearningLifeMeasurementMental disordersMethodsModelingMonitorMotorMotor outputMovementNeuromodulatorNeuronsObesityOpticsOutputPathway interactionsPerformancePhysiologic pulsePopulationPreparationProcessRaceRattusReactionRelative (related person)ResolutionRoleSTN stimulationSelf-control as a personality traitSeriesServicesSignal TransductionStimulusStructureStructure of subthalamic nucleusSubstantia nigra structureTechniquesTestingThalamic structureTimecognitive controldesigndrug abuserflexibilityfrontal lobeimprovedinnovationinsightneurochemistryneuromechanismneuroregulationnoveloptogeneticspublic health relevancerelating to nervous systemresearch studyresponsetheoriestool
项目摘要
Behavioral inhibition is central to self-control. Daily life is made immeasurably easier by a repertoire of
learned responses to stimuli, yet we need to interrupt and override such responses as circumstances and
goals change. Problems with inhibitory function characterize a range of psychiatric disorders including drug
addiction, attention-deficit hyperactivity disorder, and Tourette Syndrome. Despite the importance of behavioral
inhibition, our understanding of the neural mechanisms involved remains very limited.
A standard tool to probe behavioral inhibition is the Stop-signal task. Subjects are signaled to make
quick actions, and in a subset of trials are later instructed to cancel those movements before they begin. It has
long been hypothesized that Stop-signal performance reflects a race between Go and Stop processes, but how
this race corresponds to brain activity is not clear. Although there is a great deal of evidence that deep brain
structures called the basal ganglia are involved in stopping, there has been little corresponding investigation of
the basal ganglia using the method with the best temporal resolution - electrophysiology of single neurons.
We have recently found evidence for a neural race between distinct basal ganglia pathways. Activity in
sensorimotor striatum (STR) appeared to correspond to a Go process, while Stop cues instead provoked very
fast responses in the subthalamic nucleus (STN). Both of these areas project to the substantia nigra pars
reticulata (SNr), which can operate as a gateway to motor output. The relative timing of STR and STN firing
determined whether SNr cells responded to the Stop cue (observed when inhibition was successful), or not
(when inhibition failed).
However, our data also suggest that the STN-SNr pathway actually provides a fast yet transient
movement pause, with complete cancellation requiring a separate suppression of STR output. We hypothesize
that these two mechanisms serve complementary functions, allowing behavioral inhibition to be both fast and
selective. To investigate these processes further, we propose a series of experiments using state-of-the-art
techniques for monitoring and manipulating the basal ganglia. For Aim 1 we will compare Stop-related activity
in distinct subregions within STR, STN and SNr, to better define how information flows through "motor" and
"cognitive" circuits. For Aim 2 we will investigate whether STN signals are specific to stopping, and whether
they are driven by the intralaminar thalamus, an area involved in fast orienting reactions. For Aim 3 we will use
selective optogenetic suppression and stimulation of the STN-SNr pathway to confirm that it provides a fast
motor pause. Finally, for Aim 4 we will explore how the key neuromodulators acetylcholine and dopamine
contribute to the suppression of STR output during successfully cancelled actions.
Overall, this project would break new ground in determining with unprecedented precision how we are
able to rapidly suppress unwanted or inappropriate actions, in the service of adaptive, flexible behavior.
行为抑制是自我控制的核心。通过曲目的曲目使日常生活变得更加容易
学会了对刺激的反应,但是我们需要中断和覆盖情况和诸如环境和
目标改变。抑制功能的问题表征了包括药物在内的一系列精神疾病
成瘾,注意力缺陷多动障碍和图雷特综合征。尽管行为很重要
抑制作用,我们对所涉及的神经机制的理解仍然非常有限。
探测行为抑制的标准工具是停止信号任务。受试者的信号是
快速行动,并在一部分中指示在开始之前取消这些动作。它有
长期以来,假设停止信号表现反映了GO和停止过程之间的竞赛,但是如何
该种族对应于大脑活动尚不清楚。尽管有很多证据表明大脑
称为基底神经节的结构参与停止,几乎没有相应的研究
使用该方法具有最佳时间分辨率 - 单神经元电生理学的基础神经节。
我们最近发现了不同基础神经节途径之间神经种族的证据。活动中的活动
感觉运动纹状体(STR)似乎与GO过程相对应,而停止提示则非常激发
丘脑下核(STN)中的快速反应。这两个区域都向黑泥人尼格拉
网状(SNR),可以用作通往电动机输出的门户。 STR和STN射击的相对时机
确定SNR细胞是否响应停止提示(在抑制成功时观察到)
(抑制失败时)。
但是,我们的数据还表明STN-SNR途径实际上提供了快速而瞬态的
移动暂停,完全取消需要单独抑制STR输出。我们假设
这两种机制具有互补的功能,使行为抑制既快速又
选择性。为了进一步研究这些过程,我们提出了一系列使用最先进的实验
监测和操纵基底神经节的技术。对于目标1,我们将比较与停止相关的活动
在Str,STN和SNR中的不同子区域中,以更好地定义信息如何流过“电机”和
“认知”电路。对于AIM 2,我们将调查STN信号是否特定于停止,以及是否是否
它们是由腔内丘脑驱动的,丘脑是参与快速定向反应的区域。对于目标3,我们将使用
选择性的光遗传学抑制和STN-SNR途径的刺激,以确认它提供了快速
电机暂停。最后,对于AIM 4,我们将探讨关键神经调节剂乙酰胆碱和多巴胺如何
在成功取消动作过程中有助于抑制STR输出。
总体而言,该项目将以前所未有的精度确定我们的状况会破裂
能够快速抑制不需要或不适当的行动,以服务自适应,灵活的行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSHUA D BERKE其他文献
JOSHUA D BERKE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSHUA D BERKE', 18)}}的其他基金
Dopaminergic mechanisms for motivation and reinforcement learning
动机和强化学习的多巴胺能机制
- 批准号:
9896798 - 财政年份:2018
- 资助金额:
$ 37.74万 - 项目类别:
Dopaminergic mechanisms for motivation and reinforcement learning
动机和强化学习的多巴胺能机制
- 批准号:
10660140 - 财政年份:2018
- 资助金额:
$ 37.74万 - 项目类别:
Dopaminergic mechanisms for motivation and reinforcement learning
动机和强化学习的多巴胺能机制
- 批准号:
10132277 - 财政年份:2018
- 资助金额:
$ 37.74万 - 项目类别:
Dopaminergic mechanisms for motivation and reinforcement learning
动机和强化学习的多巴胺能机制
- 批准号:
10456214 - 财政年份:2018
- 资助金额:
$ 37.74万 - 项目类别:
Carbon Thread Arrays for High Resolution Multi-Modal Analysis of Microcircuits
用于微电路高分辨率多模态分析的碳线阵列
- 批准号:
9328183 - 财政年份:2015
- 资助金额:
$ 37.74万 - 项目类别:
Carbon Thread Arrays for High Resolution Multi-Modal Analysis of Microcircuits
用于微电路高分辨率多模态分析的碳线阵列
- 批准号:
9147004 - 财政年份:2015
- 资助金额:
$ 37.74万 - 项目类别:
Carbon Thread Arrays for High Resolution Multi-Modal Analysis of Microcircuits
用于微电路高分辨率多模态分析的碳线阵列
- 批准号:
9012524 - 财政年份:2015
- 资助金额:
$ 37.74万 - 项目类别:
相似国自然基金
乙酰胆碱通过a7nAChR调控巨噬细胞极化对肩袖损伤愈合的影响及相关机制研究
- 批准号:82102580
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
neuregulin1通过agrin/Lrp4/MuSK信号通路影响面肌和骨骼肌对肌松药敏感性差异的机制研究
- 批准号:81870714
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
非小细胞肺癌中乙酰胆碱受体α7nAChR诱导癌相关成纤维细胞代谢重编程及其影响肿瘤微环境的病理机制研究
- 批准号:81772482
- 批准年份:2017
- 资助金额:52.0 万元
- 项目类别:面上项目
基底前脑对听觉稳态反应的影响及其在精神分裂症听觉功能异常中的作用
- 批准号:31671080
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
迷走神经影响肺部微环境调控流感病毒感染、炎症和免疫反应
- 批准号:91542105
- 批准年份:2015
- 资助金额:70.0 万元
- 项目类别:重大研究计划
相似海外基金
Project 1: Modeling brain-state-dependent fluid flow and clearance in mice and humans
项目 1:模拟小鼠和人类大脑状态依赖性液体流动和清除
- 批准号:
10673158 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别:
Project 1: Modeling brain-state-dependent fluid flow and clearance in mice and humans
项目 1:模拟小鼠和人类大脑状态依赖性液体流动和清除
- 批准号:
10516501 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别:
Ovarian Hormone Regulation of Central and Cerebrovascular Hemodynamics
卵巢激素对中枢和脑血管血流动力学的调节
- 批准号:
10548812 - 财政年份:2021
- 资助金额:
$ 37.74万 - 项目类别:
Covalent Inhibition as a Method to Counteract Botulinum Intoxication
共价抑制作为对抗肉毒杆菌中毒的方法
- 批准号:
10177867 - 财政年份:2020
- 资助金额:
$ 37.74万 - 项目类别:
Covalent Inhibition as a Method to Counteract Botulinum Intoxication
共价抑制作为对抗肉毒杆菌中毒的方法
- 批准号:
10408004 - 财政年份:2020
- 资助金额:
$ 37.74万 - 项目类别: