Coordination of DNA replication, repair, and translesion DNA synthesis
DNA 复制、修复和跨损伤 DNA 合成的协调
基本信息
- 批准号:8630539
- 负责人:
- 金额:$ 34.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-05-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAntibiotic ResistanceAntibioticsArchaeaAreaBackBacteriaBacterial DNABiochemicalBiochemical GeneticsBiological AssayCell physiologyCellsCollaborationsComplexDNADNA DamageDNA Polymerase IIIDNA Polymerase betaDNA RepairDNA biosynthesisDNA-Directed DNA PolymeraseDecision MakingE coli replicaseEscherichia coliEukaryotaExposure toFailureGeneticGenomic InstabilityGenomicsGoalsGrantHumanImmune responseIn VitroIndividualKnowledgeMalignant NeoplasmsMeasuresModelingMolecularMolecular ModelsMolecular Sieve ChromatographyMutagenesisMutationOrganismPathway interactionsPlayPolymerasePrimer ExtensionProcessProteinsPseudomonas aeruginosaReactive Oxygen SpeciesRegulationResearchRoentgen RaysRoleSlideTestingTherapeuticVertebral columnVirulenceWorkbasecell growthcystic fibrosis airwaydefined contributionhuman diseaseinsightlight scatteringmangemolecular modelingnovelpathogenpathogenic bacteriapublic health relevancerepairedresearch studysingle moleculetool
项目摘要
DESCRIPTION (provided by applicant): Failure to efficiently coordinate DNA replication with other cellular processes results in mutations and genome instability, contributing to numerous human disease states, including cancers. Mutations in human pathogens, particularly those caused by reactive oxygen species (ROS) generated by the host immune response, or exposure to antibiotics, promote their adaptation to the host (i.e., pathoadaptation), exacerbating treatment. The long-term goal of our research is to develop an integrated mechanistic understanding of how organisms coordinate the actions of their DNA replication machinery with those of other cellular factors that act in DNA repair and damage tolerance. Work in our lab over the last 10 years supported by this grant has had a major impact on our understanding of mechanisms coordinating the actions of the E. coli replicase with those of translesion DNA synthesis DNA polymerases (TLS Pols). Our findings successfully challenged the well- established tool belt model. We have also shown that errors catalyzed by Pseudomonas aeruginosa DNA polymerase IV (Pol IV) contribute to mutations that likely promote persistence of this pathogen in cystic fibrosis airways. A molecular understanding of the mechanisms that contribute to mutations is crucial to our understanding of the basis for genome instability, human disease, and pathoadaptation, as well as efforts to develop novel therapies. The proposed research addresses unanswered questions regarding mechanisms that organisms use to manage the actions of their diverse Pols. We will focus our efforts in two critical yet understudied areas. During the prior period of support, we discovered that specific E.
coli beta-clamp-DNA interactions are required for DNA damage-induced mutagenesis, suggesting they impart a hierarchical order to Pol switches that may be exploited to control mutation rate. In Aim 1, we will determine the contributions of the different beta-clamp-DNA interactions to replication fidelity and TLS using a combination of genetic, biochemical, biophysical, and single molecule approaches. In Aim 2, we will use small angle X-ray scattering (SAXS), size exclusion chromatography-multi angle light scattering (SEC-MALS), molecular modeling, and biochemical approaches to structurally define complexes consisting of the 5 different E. coli Pols, clamp, and DNA. Using insights gained from these efforts, together with genetic, biochemical, biophysical, and single molecule approaches, we will define the mechanisms by which E. coli Pols switch. We will also determine whether an ability to impede Pol III processivity is shared by other proteins that switch with Pol III. Results from these experiments will provide unprecedented insight into the molecular mechanisms underlying coordinate regulation of DNA replication, DNA repair, and TLS. Furthermore, we anticipate that our results will identify critical steps in these evolutionarily conserved processes that can be targeted to control proficiency and fidelity of replication for therapeutic gain.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK D. SUTTON其他文献
MARK D. SUTTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK D. SUTTON', 18)}}的其他基金
Novel Combination Therapies to Combat Hypermutable Carbapenem-Resistant P. aeruginosa
对抗高突变碳青霉烯类耐药铜绿假单胞菌的新型联合疗法
- 批准号:
10626966 - 财政年份:2022
- 资助金额:
$ 34.79万 - 项目类别:
Novel Combination Therapies to Combat Hypermutable Carbapenem-Resistant P. aeruginosa
对抗高突变碳青霉烯类耐药铜绿假单胞菌的新型联合疗法
- 批准号:
10522530 - 财政年份:2022
- 资助金额:
$ 34.79万 - 项目类别:
Purification and Initial Biochemical Analysis of the P. aeruginosa ImuABC Error-Prone DNA Polymerase
铜绿假单胞菌 ImuABC 易错 DNA 聚合酶的纯化和初步生化分析
- 批准号:
9891550 - 财政年份:2020
- 资助金额:
$ 34.79万 - 项目类别:
Purification and Initial Biochemical Analysis of the P. aeruginosa ImuABC Error-Prone DNA Polymerase
铜绿假单胞菌 ImuABC 易错 DNA 聚合酶的纯化和初步生化分析
- 批准号:
10094185 - 财政年份:2020
- 资助金额:
$ 34.79万 - 项目类别:
Coordination of DNA replication, repair, and translesion DNA synthesis
DNA 复制、修复和跨损伤 DNA 合成的协调
- 批准号:
9041875 - 财政年份:2003
- 资助金额:
$ 34.79万 - 项目类别:
相似国自然基金
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于波动法的叠层橡胶隔震支座老化损伤原位检测及精确评估方法研究
- 批准号:52308322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
- 批准号:42377282
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高层建筑外墙保温材料环境暴露自然老化后飞火点燃机理及模型研究
- 批准号:52376132
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Water Emergency Team (WET): Community-Driven Rapid Response Team to Evaluate Antibiotic-Resistant Bacteria Exposures and Household Environmental Health Risks from Sewer Overflows and Basement Flooding
水应急小组 (WET):社区驱动的快速响应小组,评估下水道溢出和地下室洪水导致的抗生素耐药细菌暴露和家庭环境健康风险
- 批准号:
10686675 - 财政年份:2023
- 资助金额:
$ 34.79万 - 项目类别:
Development and optimization of a nitric oxide releasing microparticle-basedtopical treatment for onychomycosis
基于一氧化氮释放微粒的甲癣局部治疗方法的开发和优化
- 批准号:
10686200 - 财政年份:2022
- 资助金额:
$ 34.79万 - 项目类别:
Development and optimization of a nitric oxide releasing microparticle-basedtopical treatment for onychomycosis
基于一氧化氮释放微粒的甲癣局部治疗方法的开发和优化
- 批准号:
10547384 - 财政年份:2022
- 资助金额:
$ 34.79万 - 项目类别:
Lysterases as first-in-class prophylactic topical antimicrobials to prevent postsurgical shoulder infections
莱斯特酶作为一流的预防性局部抗菌剂,可预防术后肩部感染
- 批准号:
10080363 - 财政年份:2020
- 资助金额:
$ 34.79万 - 项目类别:
Supplement to Chemical Biology Studies of the Dynamics and Inhibition of Peptidoglycan Biosynthesis
肽聚糖生物合成动力学和抑制的化学生物学研究的补充
- 批准号:
10609340 - 财政年份:2020
- 资助金额:
$ 34.79万 - 项目类别: