Respiratory Circuit Dysfunction in Rett Syndrome
雷特综合征的呼吸回路功能障碍
基本信息
- 批准号:8184609
- 负责人:
- 金额:$ 38.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAffectAgonistAllelesBehavioralBirthBrain StemBrain-Derived Neurotrophic FactorBreathingCell NucleusCell physiologyCellsCognitiveComplexDefectDevelopmentDiseaseEconomic InflationElectric StimulationEquilibriumExhibitsFemaleFiberFosteringFunctional disorderGenerationsGenesGeneticGenetic PolymorphismGenetic VariationGenetically Engineered MouseHumanHyperventilationHypoxiaImmediate-Early GenesIn VitroInterneuronsKnockout MiceKnowledgeLifeLightLungMapsMediatingMethodsMotorMusMutant Strains MiceMutateMutationNeurologic DeficitNeurologic DysfunctionsNeuronsNeurotrophic Tyrosine Kinase Receptor Type 2Nucleus solitariusPathway interactionsPatientsPlethysmographyPontine structurePopulationPreparationProteinsReflex actionResearchRespiratory physiologyRestRett SyndromeRoleSeveritiesSeverity of illnessSignal TransductionSignaling MoleculeSiteSliceStructureSymptomsSynapsesTestingTherapeuticautism spectrum disorderbasedesignelectrical propertyin vivoinnovationinsightinterdisciplinary approachlung hypoxiamouse modelmutantneurochemistryneuromechanismneuronal excitabilityneuronal patterningnovel strategiesnovel therapeutic interventionnovel therapeuticspatch clamprespiratoryrespiratory reflexresponsesmall moleculesynaptic functiontransmission process
项目摘要
DESCRIPTION (provided by applicant): Rett syndrome (RTT) is a complex Autism Spectrum Disorder (ASD) that is caused by mutations in the MECP2 gene and affects approximately 1 in 10,000 live female births worldwide. In addition to cognitive, motor and behavioral deficits, one of the most physically debilitating consequences of RTT is severe disruption in the control of breathing, and up to 25% of RTT patients may die prematurely of cardiorespiratory complications. Currently, there are no treatments available for breathing disorders, or any other neurologic deficits in RTT. Our understanding of neural mechanisms that underlie respiratory dysfunction in RTT is hampered by the fact that we still know little about how loss of MECP2 affects neuronal and/or synaptic function in specific brainstem respiratory circuits. Therefore, the proposed research takes a multidisciplinary approach to define how genetic loss of MECP2 disrupts respiratory control, focusing on modulation of excitatory-inhibitory balance in key respiratory reflex pathways in the brainstem using a well-defined mouse model of the disease. Electrophysiological methods will be used in brainstem slices in vitro to test the hypothesis that increased excitability at primary afferent synapses regulating reflex responses to hypoxia and lung inflation contributes to respiratory circuit dysfunction in RTT and to define underlying mechanisms. We will also examine how deficits in Brain Derived Neurotrophic Factor (BDNF), a key neuronal signaling molecule whose expression is severely decreased in RTT, contribute to synaptic dysfunction, as well as the ability of molecules that enhance BDNF signaling to restore normal function in RTT mice in vitro and in vivo. In addition, we will use Fos immunostaining to map sites throughout the brainstem respiratory network at which neuronal and/or synaptic function is disrupted in vivo. Finally, we will examine how a common polymorphism in the human BDNF gene, Val66Met-BDNF, influences the severity of respiratory symptoms and the therapeutic response to BDNF- targeted therapies in mice. The proposed research aims to define mechanisms that underlie respiratory dysfunction in RTT using innovative experimental approaches and mouse models. By focusing on synaptic excitability, and BDNF-mediated signaling in particular, it is hoped these studies will foster development of new therapeutic strategies for breathing disorders in RTT. Moreover, it is hoped that insights obtained from analysis of circuit dysfunction in RTT will be broadly applicable to ASDs as a whole.
PUBLIC HEALTH RELEVANCE: The proposed research seeks to define mechanisms that underlie breathing disorders in Rett syndrome (RTT), a devastating Autism Spectrum Disorder affecting approximately 1 in 10,000 female births worldwide. RTT patients suffer from uncontrollable periods of hyperventilation and breath-holding and up to 25% die prematurely of cardiorespiratory complications. The proposed studies will use mouse models of RTT to identify defects in nerve cell function that cause abnormal breathing in this disease and to develop potential new therapeutic approaches.
描述(由申请人提供):雷特综合征 (RTT) 是一种复杂的自闭症谱系障碍 (ASD),由 MECP2 基因突变引起,影响全球大约万分之一的活产女婴。除了认知、运动和行为缺陷之外,RTT 最严重的身体衰弱后果之一是呼吸控制的严重破坏,高达 25% 的 RTT 患者可能因心肺并发症过早死亡。目前,尚无针对呼吸障碍或 RTT 中任何其他神经系统缺陷的治疗方法。我们对 RTT 呼吸功能障碍背后的神经机制的理解受到以下事实的阻碍:我们仍然对 MECP2 的缺失如何影响特定脑干呼吸回路中的神经元和/或突触功能知之甚少。因此,拟议的研究采用多学科方法来定义 MECP2 的遗传丢失如何破坏呼吸控制,重点是使用明确的疾病小鼠模型来调节脑干关键呼吸反射途径的兴奋性抑制平衡。电生理学方法将用于体外脑干切片,以测试调节对缺氧和肺充气的反射反应的初级传入突触兴奋性增加导致 RTT 中呼吸回路功能障碍的假设,并确定潜在机制。我们还将研究脑源性神经营养因子(BDNF)的缺陷如何导致突触功能障碍,以及增强 BDNF 信号传导的分子恢复 RTT 中正常功能的能力。BDNF 是一种关键的神经元信号分子,其表达在 RTT 中严重降低。小鼠体外和体内。此外,我们将使用 Fos 免疫染色来绘制整个脑干呼吸网络中神经元和/或突触功能在体内被破坏的位点。最后,我们将研究人类 BDNF 基因中常见的多态性 Val66Met-BDNF 如何影响小鼠呼吸道症状的严重程度以及对 BDNF 靶向治疗的治疗反应。拟议的研究旨在利用创新的实验方法和小鼠模型来确定 RTT 呼吸功能障碍的机制。通过关注突触兴奋性,特别是 BDNF 介导的信号传导,希望这些研究能够促进 RTT 呼吸障碍新治疗策略的开发。此外,希望从 RTT 中的电路功能障碍分析中获得的见解能够广泛适用于整个 ASD。
公共健康相关性:拟议的研究旨在确定雷特综合征 (RTT) 呼吸障碍的机制,这是一种毁灭性的自闭症谱系障碍,影响全球大约万分之一的女性新生儿。 RTT 患者患有无法控制的过度换气和屏气期,高达 25% 的患者因心肺并发症过早死亡。拟议的研究将使用 RTT 小鼠模型来识别导致这种疾病呼吸异常的神经细胞功能缺陷,并开发潜在的新治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David M. Katz其他文献
Glial cell line-derived neurotrophic factor (GDNF) is required for differentiation of pontine noradrenergic neurons and patterning of central respiratory output
胶质细胞源性神经营养因子 (GDNF) 是脑桥去甲肾上腺素能神经元分化和中枢呼吸输出模式所必需的
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:3.3
- 作者:
L. Huang;Hong Guo;D. Hellard;David M. Katz - 通讯作者:
David M. Katz
New insights into the ontogeny of breathing from genetically engineered mice.
对基因工程小鼠呼吸个体发育的新见解。
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:3.3
- 作者:
David M. Katz;Agnieszka Balkowiec - 通讯作者:
Agnieszka Balkowiec
David M. Katz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David M. Katz', 18)}}的其他基金
PTP1B Inhibitors for the Treatment of Rett Syndrome
用于治疗 Rett 综合征的 PTP1B 抑制剂
- 批准号:
9562137 - 财政年份:2017
- 资助金额:
$ 38.69万 - 项目类别:
BDNF AND MeCP2 in Autonomic Dysfunction
BDNF 和 MeCP2 在自主神经功能障碍中的作用
- 批准号:
7912099 - 财政年份:2007
- 资助金额:
$ 38.69万 - 项目类别:
BDNF AND MeCP2 in Autonomic Dysfunction
BDNF 和 MeCP2 在自主神经功能障碍中的作用
- 批准号:
7795691 - 财政年份:2007
- 资助金额:
$ 38.69万 - 项目类别:
BDNF AND MeCP2 in Autonomic Dysfunction
BDNF 和 MeCP2 在自主神经功能障碍中的作用
- 批准号:
7386688 - 财政年份:2007
- 资助金额:
$ 38.69万 - 项目类别:
Respiratory Circuit Dysfunction in Rett Syndrome
雷特综合征的呼吸回路功能障碍
- 批准号:
8533028 - 财政年份:2007
- 资助金额:
$ 38.69万 - 项目类别:
BDNF AND MeCP2 in Autonomic Dysfunction
BDNF 和 MeCP2 在自主神经功能障碍中的作用
- 批准号:
7585761 - 财政年份:2007
- 资助金额:
$ 38.69万 - 项目类别:
BDNF AND MeCP2 in Autonomic Dysfunction
BDNF 和 MeCP2 在自主神经功能障碍中的作用
- 批准号:
7186017 - 财政年份:2007
- 资助金额:
$ 38.69万 - 项目类别:
Prefrontal cortical dysfunction in Rett syndrome
雷特综合征的前额皮质功能障碍
- 批准号:
9229746 - 财政年份:2007
- 资助金额:
$ 38.69万 - 项目类别:
Respiratory Circuit Dysfunction in Rett Syndrome
雷特综合征的呼吸回路功能障碍
- 批准号:
8321984 - 财政年份:2007
- 资助金额:
$ 38.69万 - 项目类别:
BDNF in plasticity of chemoafferent pathway
BDNF 在化学传入途径可塑性中的作用
- 批准号:
6564825 - 财政年份:2002
- 资助金额:
$ 38.69万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
BRITE-Eye: An integrated discovery engine for CNS therapeutic targets driven by high throughput genetic screens, functional readouts in human neurons, and machine learning
BRITE-Eye:由高通量遗传筛选、人类神经元功能读数和机器学习驱动的中枢神经系统治疗靶点的集成发现引擎
- 批准号:
10699137 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Peptibodies As Novel Therapies in Atrial Fibrillation
肽体作为心房颤动的新疗法
- 批准号:
10598711 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别:
Investigating Astrocytic Glutamate and Potassium Dynamics in the Healthy and Injured Brain
研究健康和受伤大脑中星形胶质细胞谷氨酸和钾的动态
- 批准号:
10754425 - 财政年份:2023
- 资助金额:
$ 38.69万 - 项目类别: