Elucidating beta-lactamase functional mechanisms via evolutionary conservation
通过进化保守阐明β-内酰胺酶的功能机制
基本信息
- 批准号:8432993
- 负责人:
- 金额:$ 32.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-15 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAllosteric SiteAmino Acid SequenceAntibiotic ResistanceAntibioticsBacteriaBacterial InfectionsBenignBindingBioinformaticsBiophysicsCell WallCephalosporin ResistanceCephalosporinsComparative StudyConceptionsDataDevelopmentEntropyEnzymesEquilibriumEvolutionFamilyFinancial compensationFrightFutureGatekeepingGenerationsGenesGram-Negative BacteriaGram-Positive Bacterial InfectionsHydrolysisIonsLactamaseLactamsLeadMechanicsMediatingMetalsMethodsMetricModelingMutationOrthologous GenePatternPenetrationPenicillin ResistancePenicillinsPeptide Sequence DeterminationPhylogenetic AnalysisPhylogenyPropertyProteinsPublic HealthResistanceSeriesSerineStructureStructure-Activity RelationshipSystemThermodynamicsVariantWorkZincbacterial resistancebasebeta-Lactamasecombatcomparativedesigneffective therapyenthalpyflexibilityglobal healthimprovedinsightinterestmembermolecular dynamicsnovel therapeuticsprotein structurepublic health relevanceresistance mechanism
项目摘要
DESCRIPTION (provided by applicant): Penicillins and chemically related molecules are our most abundant and common used class of antibiotics, which are characterized by a conserved 4-atom ¿-lactam ring. Historically, they have been an effective treatment to gram-positive bacterial infections; however, the cell wall of gram-negative bacteria poses an effective barrier to antibiotic penetration. Conversely, second generation cephalosporins are also effective against gram-negative bacteria because they are able to penetrate the cell wall. Nevertheless, an increasing number of bacteria are resistant due to the enzyme ?-lactamase (BL). BL, which is expressed in the cell wall, hydrolyzes the ? -lactam ring, thus rendering the antibiotic ineffective. Due to decades of antibiotic overuse, BL enzymes have alarmingly evolved additional resistances that are now breaking down our last lines of defense. For example, extended spectrum ? -lactamases (ESBL) also hydrolyze the ? -lactam ring of cephalosporins, which have generally been resistant to BL activity. As such, a better understanding of BL resistance mechanisms is imperative so that new and more effective antibiotics can be developed quickly. There are four common classes of BL enzymes, which reflect specific sequence, structure and antibiotic resistance patterns. The Class A, C and D enzymes share a serine-based hydrolysis, whereas the catalytic mechanism of Class B enzymes is based on a zinc ion. However, little is known about how dynamics and stability vary across the superfamily. Are stability and/or dynamical mechanisms conserved across the superfamily? Are certain mechanisms critical to function? Can mechanistic differences help explain antibiotic resistance patterns? Is allostery conserved across the superfamily? These are the types of unanswered questions this proposal seeks to answer. To that end, we will employ a powerful and fast computational distance constraint model (DCM) to characterize the serine-based classes. While broad characterization across the BL superfamily has not yet been done, a small number of Class A structures have been studied by NMR and molecular dynamics simulation. Interestingly, these structures appear extraordinarily rigid, punctuated by flexible loop regions that may or may not be related to function. Our preliminary DCM characterizations across Class A enzymes reproduce these results. Even so, there is significant diversity within dynamical quantities across
the family, which reflects evolutionary out-groups and, in many cases, parallels the onset of extended-spectrum activities. Taken together, these preliminary results highlight how the synthesis of biophysical descriptions with the paradigm of comparative bioinformatics synergistically improves the importance and accuracy of our characterizations. As such, we propose a series of additional studies along these lines to expand our understanding of BL structure and function, potentially paving the way to new therapeutic opportunities.
描述(由申请人提供):青霉素和化学相关分子是我们最丰富且最常用的一类抗生素,其特征是保守的 4 个原子 ¿ -内酰胺环。从历史上看,它们是治疗革兰氏阳性细菌感染的有效方法;然而,革兰氏阴性细菌的细胞壁对抗生素的渗透构成了有效的屏障,第二代头孢菌素也对革兰氏阴性细菌有效。因为它们能够穿透细胞壁。然而,由于细胞壁中表达的 β-内酰胺酶 (BL) 会水解 β-内酰胺,越来越多的细菌产生了耐药性。由于几十年来抗生素的过度使用,BL 酶已经产生了额外的耐药性,正在打破我们的最后一道防线,例如,超广谱 β-内酰胺酶 (ESBL) 也会水解 β-内酰胺。头孢菌素环通常对 BL 活性具有耐药性,因此,必须更好地了解 BL 耐药机制,以便快速开发新的、更有效的抗生素。有四种常见类别。 BL 酶,反映了特定的序列、结构和抗生素抗性模式,A 类、C 类和 D 类酶具有基于丝氨酸的水解作用,而 B 类酶的催化机制则基于锌离子。整个超家族的稳定性和/或动力学机制是否保守?某些机制差异是否可以帮助解释抗生素耐药性模式?为此,我们将采用强大且快速的计算距离约束模型 (DCM) 来表征基于丝氨酸的类别,虽然尚未完成 BL 超家族的广泛表征。通过 NMR 和分子动力学模拟研究了少量 A 类结构,表明这些结构显得异常刚性,中间夹杂着可能与功能相关或无关的柔性环区域。这些结果甚至在动态量上也存在显着的差异。
家庭,反映了进化的外群体,并且在许多情况下,与扩展谱活动的发生相平行。总而言之,这些初步结果强调了生物物理描述与比较生物信息学范式的综合如何协同提高了进化的重要性和准确性。因此,我们提出了一系列额外的研究,以扩大我们对 BL 结构和功能的理解,可能为新的治疗机会铺平道路。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald JACOBS其他文献
Donald JACOBS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald JACOBS', 18)}}的其他基金
Supplement: New computer for computationally designing peptides to interfere with p53-MDM2 and p53-sirtuin interaction
补充:用于计算设计干扰 p53-MDM2 和 p53-sirtuin 相互作用的肽的新计算机
- 批准号:
10798727 - 财政年份:2022
- 资助金额:
$ 32.3万 - 项目类别:
Computationally designing peptides to interfere with p53-MDM2 and p53-sirtuin interaction
通过计算设计干扰 p53-MDM2 和 p53-sirtuin 相互作用的肽
- 批准号:
10439131 - 财政年份:2022
- 资助金额:
$ 32.3万 - 项目类别:
Supplement: Student support for computationally designing peptides to interfere with p53-MDM2 and p53-sirtuin interaction
补充:学生支持通过计算设计肽来干扰 p53-MDM2 和 p53-sirtuin 相互作用
- 批准号:
10829740 - 财政年份:2022
- 资助金额:
$ 32.3万 - 项目类别:
REAL TIME PROTEIN DOMAIN AND FLEXIBILITY IDENTIFICATION
实时蛋白质结构域和灵活性识别
- 批准号:
2715292 - 财政年份:1998
- 资助金额:
$ 32.3万 - 项目类别:
相似国自然基金
靶向真菌FBA全新共价变构位点新型双功能共价抑制剂的发现及其机制研究
- 批准号:22377030
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
靶向SARS-CoV-2主蛋白酶二聚体界面新位点变构抑制剂的设计、合成与活性评价
- 批准号:22307067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向正构或变构位点的选择性PI3Kα抑制剂的设计、合成及抗肿瘤活性评价
- 批准号:22367006
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Sos1变构位点作为Kras介导的血液恶性肿瘤治疗靶点的研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于靶蛋白BRD4变构位点的海洋抗炎小分子MBR19结构优化及作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
ALLOSTERIC IMPACT OF NON-ACTIVE-SITE MUTATIONS ON ENZYMATIC FUNCTION
非活性位点突变对酶功能的变构影响
- 批准号:
9361418 - 财政年份:2017
- 资助金额:
$ 32.3万 - 项目类别:
ALLOSTERIC IMPACT OF NON-ACTIVE-SITE MUTATIONS ON ENZYMATIC FUNCTION
非活性位点突变对酶功能的变构影响
- 批准号:
9977221 - 财政年份:2017
- 资助金额:
$ 32.3万 - 项目类别:
ALLOSTERIC IMPACT OF NON-ACTIVE-SITE MUTATIONS ON ENZYMATIC FUNCTION
非活性位点突变对酶功能的变构影响
- 批准号:
10214633 - 财政年份:2017
- 资助金额:
$ 32.3万 - 项目类别:
ALLOSTERIC IMPACT OF NON-ACTIVE-SITE MUTATIONS ON ENZYMATIC FUNCTION
非活性位点突变对酶功能的变构影响
- 批准号:
9557495 - 财政年份:2017
- 资助金额:
$ 32.3万 - 项目类别:
Allosteric regulation of a viral RNA-dependent RNA polymerase
病毒RNA依赖性RNA聚合酶的变构调节
- 批准号:
8952493 - 财政年份:2015
- 资助金额:
$ 32.3万 - 项目类别: