Engineering Bacteriophage T7 RNA Polymerase/Promoter System for Mammalian Synthet
用于哺乳动物合成的工程噬菌体 T7 RNA 聚合酶/启动子系统
基本信息
- 批准号:8521522
- 负责人:
- 金额:$ 2.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2013-08-16
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAmino Acid SequenceAntibiotic ResistanceAreaBacteriaBacteriophage T7BehaviorBindingBiological MarkersCell DeathCellsCharacteristicsChromosomesComplexConditioned Culture MediaDNA-Directed RNA PolymeraseDataDetectionDevelopmentDiagnosticDiseaseElementsEngineeringEnsureEscherichia coliFluorescenceGene ExpressionGene Expression RegulationGenesGeneticGenetic EngineeringGenetic TranscriptionGenome engineeringGenomicsGrowthHereditary DiseaseHot SpotLibrariesLifeLogicMalignant NeoplasmsMammalian CellMethodsMicrobeMutagenesisMutationNatureOligonucleotidesOrganismPeptide Sequence DeterminationPhysiologic pulseProtein EngineeringProtein RegionProteinsRadiationRegulatory ElementResearchResearch Project GrantsResolutionSourceSpecificitySpeedStructureSystemT7 RNA polymeraseTechniquesTechnologyTemperatureTestingTherapeuticVariantWorkYeastsbiological systemscancer cellcancer therapycellular engineeringchemotherapychromosome replicationcombatcombinatorialconventional therapydesigngenetic elementhuman diseaseimprovednovelpromoterpublic health relevanceresponsesensorsynthetic biologytherapeutic targettool
项目摘要
DESCRIPTION (provided by applicant): Advances in genomics technology and genetic engineering enabled the development of a new field, synthetic biology, which seeks to create novel behaviors in cells by introducing new genetic elements and integrating such elements into circuits to produce more complex behaviors. Unfortunately, due to the added complexity of mammalian gene regulation, circuit construction, and circuit integration, much research in synthetic biology has been limited to simpler organisms like bacteria and yeast. However, due to the great potential of mammalian synthetic biology for therapeutics and diagnostics, it is imperative that more effort be focused towards this area. One basic need for synthetic biology is orthogonal transcription machinery which can be used to finely control gene expression. I propose using advanced genome engineering techniques, such as Trackable Multiplex Recombineering (TRMR) and Protein Sequence Activity Relationship (ProSAR), to engineer orthogonal RNA polymerase/promoter pairs. The bacteriophage T7 RNA polymerase/promoter system is an excellent starting point for this project research due to its rapid transcription spee, low termination rate and high specificity for its promoter sequence. I will rationally design oligo to search the protein space to determine 'hot spots' that effect promoter binding and then subject these areas to saturation mutagenesis. Combinatorial mutations will also be explored via multiplex automated genome engineering techniques. I will characterize the engineered RNA polymerase/promoter pairs to determine strength of promoter and orthogonality. Ultimately, these fully characterized RNA polymerase/promoter systems can then be used as parts for genetic circuit design and integration in mammalian cells.
描述(由申请人提供):基因组技术和遗传工程的进步使新领域,合成生物学的发展,旨在通过引入新的遗传元素并将此类元素整合到电路中以产生更复杂的行为,从而在细胞中创造新的行为。不幸的是,由于哺乳动物基因调节,电路结构和电路整合的复杂性增加,因此在合成生物学方面进行了许多研究,仅限于细菌和酵母等简单生物。但是,由于哺乳动物合成生物学对治疗和诊断的巨大潜力,因此必须将更多的努力集中在这一领域。合成生物学的一个基本需求是正交转录机制,可用于精心控制基因表达。我建议使用先进的基因组工程技术,例如可跟踪的多重重组(TRMR)和蛋白质序列活性关系(PROSAR),以设计正交RNA聚合酶/启动子对。噬菌体T7 RNA聚合酶/启动子系统由于其快速转录SPEE,低终止率和启动子序列的高特异性而成为该项目研究的绝佳起点。我将在理性上设计寡核,以搜索蛋白质空间,以确定影响启动子结合的“热点”,然后使这些区域受到饱和诱变。组合突变还将通过多重自动基因组工程技术探索。我将表征工程的RNA聚合酶/启动子对,以确定启动子和正交性的强度。最终,这些完全表征的RNA聚合酶/启动子系统可以用作哺乳动物细胞中遗传回路设计和整合的零件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nanette Regina Boyle其他文献
Nanette Regina Boyle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于祖先序列重构的D-氨基酸解氨酶的新酶设计及分子进化
- 批准号:32271536
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
模板化共晶聚合合成高分子量序列聚氨基酸
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
模板化共晶聚合合成高分子量序列聚氨基酸
- 批准号:22201105
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于祖先序列重构的D-氨基酸解氨酶的新酶设计及分子进化
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
C-末端40个氨基酸插入序列促进细菌脂肪酸代谢调控因子FadR转录效率的机制研究
- 批准号:82003257
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Leveraging evolutionary analyses and machine learning to discover multiscale molecular features associated with antibiotic resistance
利用进化分析和机器学习发现与抗生素耐药性相关的多尺度分子特征
- 批准号:
10658686 - 财政年份:2023
- 资助金额:
$ 2.13万 - 项目类别:
Discovering interpretable mechanisms explaining high dimensional biomolecular data
发现解释高维生物分子数据的可解释机制
- 批准号:
10711988 - 财政年份:2023
- 资助金额:
$ 2.13万 - 项目类别:
Antibiotic tolerance: membraneless organelles and autolysin regulation
抗生素耐受:无膜细胞器和自溶素调节
- 批准号:
10333641 - 财政年份:2022
- 资助金额:
$ 2.13万 - 项目类别:
VLP-based Vaccines for Targeting Staphylococcus Aureus β-barrel Toxins
基于 VLP 的针对金黄色葡萄球菌 β 桶毒素的疫苗
- 批准号:
10538909 - 财政年份:2022
- 资助金额:
$ 2.13万 - 项目类别: