Engineered antibody fragments for cocrystallization with signal peptide peptidase
用于与信号肽肽酶共结晶的工程化抗体片段
基本信息
- 批准号:8309972
- 负责人:
- 金额:$ 29.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAddressAffinityAlzheimer&aposs DiseaseAntibodiesAspartateBindingBiochemicalBioinformaticsBiologicalBiologyCell surfaceCellsChemistryCocrystallographyComplexCrystallizationDevelopmentDiseaseDistantDockingEndoplasmic ReticulumEngineeringEnzyme-Linked Immunosorbent AssayEpitopesEscherichia coliGel ChromatographyHepatitis C TherapyHepatitis C virusHis-His-His-His-His-HisHomologous GeneHydrolysisImmune responseImmunityImmunoglobulin FragmentsIntegral Membrane ProteinKnowledgeLocationMajor Histocompatibility ComplexMembraneMembrane LipidsMembrane ProteinsMethodsMolecularMolecular ChaperonesMuscle ContractionMutagenesisNatural ImmunityNatural Killer CellsOutcomeParentsPeptide HydrolasesPeptide Signal SequencesPeptidesPhage DisplayProcessProteinsProteolysisRandomizedReagentResolutionRoleRouteSignal TransductionSite-Directed MutagenesisStructureTechnologyTherapeuticVariantVirus ReplicationWorkdirected evolutionexperienceimmunoregulationinhibitor/antagonistinterestnew technologynovel strategiespresenilinprotein structuresignal peptide peptidasevirus pathogenesis
项目摘要
Hydrophobic membrane proteins perform a variety of functions in the cell, but their structures are
notoriously difficult to solve. Thus, new strategies to obtain crystals of membrane proteins for structure
determination are critical. The objectives of this proposal are to develop a toolbox of chaperones and use them
to crystallize and solve the de novo, high resolution structure of two signal peptide peptidases (SPPs), which
use catalytic aspartates to conduct hydrolysis within the lipid membrane. In contrast to work employing affinity
reagents specific to the membrane protein of interest, our potentialy transformative aproach uses
hypercrystallizable single chain antibody fragments (scFvs). Our chaperones are engineered for tight binding
to a short epitope that can be inserted into any membrane protein. We expect that our tightly bound scFv
chaperone will immobilize an SPP loop and provide a stable crystal lattice, leading to better diffracting crystals.
SPPs trim signal peptides (SPs) to liberate them from the endoplasmic reticulum membrane. SPP
substrates include SPs remnants derived from new histocompatibility complex 1b (MHC-1b) molecules. As a
part of innate immunity, these processed peptides are presented on cell surfaces for recognition by Natural
Killer cells to indicate that the cell is healthy. In addition, SPP substrates include SPs from proteins involved in
immune response and muscle contraction. SPP is also hijacked by the Hepatitis C virus (HCV) for replication,
and is related to presenilin, which uses similar chemistry to generate amyloidogenic peptides in Alzheimer
Disease. SPP and presenilin comprise one of just three superfamilies of intramembrane proteases.
The details of regulated intramembrane proteolysis, from cell biological signaling to active site
chemistry, are of both fundamental biochemical importance and potential therapeutic application. How
substrates are presented and hydrolyzed within the confines of the hydrophobic space of the lipid membrane,
however, remain largely a mystery. At least 5 SPP variants have been sequenced, located in different regions
of ER, and SPPs are conserved throughput biology, but there is no crystal structure yet.
We will start by solving the structure an archeal homolog in complex with our chaperones as proof-of-
principle, and then expand to a eukaryotic SPP, whose biomedical relevant activity is known. To date, we
have engineered our first chaperone and isolated an affinity complex with SPP by gel filtration. Independently,
we have grown crystals of the chaperone and SPP. However, the crystals of SPP do not diffract well enough
for structure determination, and thus the cocrystalllization technology is critical.
The expected outcomes are a toolbox of crystallization chaperones as well as the first molecular picture
of SPP, including the location of the active site and substrate-docking patches. Taken together, this project will
contribute not only to the biology of immunoregulation and intramembrane proteolysis, but also broaden our
knowledge of membrane proteins and enable other membrane protein structures to be solved.
疏水膜蛋白在细胞中执行多种功能,但它们的结构是
出了名的难以解决。因此,获得膜蛋白晶体结构的新策略
决心至关重要。该提案的目标是开发一个伴侣工具箱并使用它们
结晶并解析两种信号肽肽酶 (SPP) 的从头高分辨率结构,
使用催化天冬氨酸在脂质膜内进行水解。与利用亲和力的工作相反
特定于感兴趣的膜蛋白的试剂,我们潜在的变革方法使用
超结晶单链抗体片段(scFv)。我们的伴侣专为紧密结合而设计
可以插入任何膜蛋白的短表位。我们期望紧密结合的 scFv
分子伴侣将固定 SPP 环并提供稳定的晶格,从而产生更好的衍射晶体。
SPP 修剪信号肽 (SP),将其从内质网膜中释放出来。 SPP
底物包括源自新组织相容性复合物 1b (MHC-1b) 分子的 SP 残余物。作为一个
作为先天免疫的一部分,这些经过加工的肽被呈现在细胞表面以供自然识别
杀伤细胞表明细胞是健康的。此外,SPP 底物包括来自参与以下过程的蛋白质的 SP:
免疫反应和肌肉收缩。 SPP也被丙型肝炎病毒(HCV)劫持进行复制,
与早老素有关,后者使用类似的化学作用在阿尔茨海默病中产生淀粉样肽
疾病。 SPP 和早老素是膜内蛋白酶的三个超家族之一。
从细胞生物信号传导到活性位点的受控膜内蛋白水解的细节
化学,具有基本的生化重要性和潜在的治疗应用。如何
底物在脂膜疏水空间的范围内呈现并水解,
然而,这在很大程度上仍然是一个谜。至少 5 个 SPP 变体已被测序,位于不同区域
ER和SPP是保守的通量生物学,但还没有晶体结构。
我们将首先解决与我们的伴侣复合物的古同源物的结构作为证明-
原理,然后扩展到真核SPP,其生物医学相关活性是已知的。迄今为止,我们
设计了我们的第一个分子伴侣,并通过凝胶过滤分离了 SPP 亲和复合物。独立地,
我们已经生长了伴侣和 SPP 的晶体。然而,SPP 晶体的衍射性能不够好
对于结构确定,因此共结晶技术至关重要。
预期结果是结晶伴侣工具箱以及第一张分子图片
SPP,包括活性位点和底物对接贴片的位置。综合起来,该项目将
不仅有助于免疫调节和膜内蛋白水解的生物学,而且还拓宽了我们的研究领域
膜蛋白的知识并能够解决其他膜蛋白结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JENNIFER A MAYNARD其他文献
JENNIFER A MAYNARD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JENNIFER A MAYNARD', 18)}}的其他基金
Structure, function and antigenicity of B. pertussis virulence factors
百日咳博德特氏菌毒力因子的结构、功能和抗原性
- 批准号:
10298432 - 财政年份:2021
- 资助金额:
$ 29.7万 - 项目类别:
Structure, function and antigenicity of B. pertussis virulence factors
百日咳博德特氏菌毒力因子的结构、功能和抗原性
- 批准号:
10448307 - 财政年份:2021
- 资助金额:
$ 29.7万 - 项目类别:
Structure, function and antigenicity of B. pertussis virulence factors
百日咳博德特氏菌毒力因子的结构、功能和抗原性
- 批准号:
10656458 - 财政年份:2021
- 资助金额:
$ 29.7万 - 项目类别:
Returning to the workforce supplement request for R01 GM095638
返回 R01 GM095638 的劳动力补充请求
- 批准号:
8670457 - 财政年份:2010
- 资助金额:
$ 29.7万 - 项目类别:
Instrument to quantify solution binding kinetics for drug discovery & development
用于药物发现的溶液结合动力学量化仪器
- 批准号:
7794532 - 财政年份:2010
- 资助金额:
$ 29.7万 - 项目类别:
Engineered antibody fragments for cocrystallization with signal peptide peptidase
用于与信号肽肽酶共结晶的工程化抗体片段
- 批准号:
8149925 - 财政年份:2010
- 资助金额:
$ 29.7万 - 项目类别:
Engineered antibody fragments for cocrystallization with signal peptide peptidase
用于与信号肽肽酶共结晶的工程化抗体片段
- 批准号:
8520337 - 财政年份:2010
- 资助金额:
$ 29.7万 - 项目类别:
Engineered antibody fragments for cocrystallization with signal peptide peptidase
用于与信号肽肽酶共结晶的工程化抗体片段
- 批准号:
8780816 - 财政年份:2010
- 资助金额:
$ 29.7万 - 项目类别:
Engineered antibody fragments for cocrystallization with signal peptide peptidase
用于与信号肽肽酶共结晶的工程化抗体片段
- 批准号:
8028124 - 财政年份:2010
- 资助金额:
$ 29.7万 - 项目类别:
Antibody-mediated protection against whooping cough
抗体介导的百日咳保护
- 批准号:
6962314 - 财政年份:2005
- 资助金额:
$ 29.7万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
- 批准号:
10607139 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
Development of Selective Oxidative Biocatalytic Methods
选择性氧化生物催化方法的发展
- 批准号:
10606798 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别:
Research and cloud deployment of enhanced sampling methods in MovableType
MovableType中增强采样方法的研究和云部署
- 批准号:
10699159 - 财政年份:2023
- 资助金额:
$ 29.7万 - 项目类别: