Use of Machine Learning Classifiers to Forecast Severe Acute Postoperative Pain F

使用机器学习分类器预测严重急性术后疼痛 F

基本信息

  • 批准号:
    8353726
  • 负责人:
  • 金额:
    $ 15.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-05 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Up to 40% of patients undergoing surgery report moderate to severe pain in the postoperative period. The development of a clinical decision support system to allow preoperative intervention for this subset of patients may have a profound impact on their recovery, and potentially their long-term outcome. To accurately forecast severe postoperative pain, we propose the use of machine learning classifiers (MLC's), which are classification algorithms employing a range of novel search and classification methodologies that continually update their performance as new information becomes available. This award will permit the applicant to complete a rigorous didactic curriculum emphasizing classification theory, algorithm evaluation, and development of clinical decision support systems. The nature of these studies place them far outside the realm of traditional medical education. By protecting time for continued mentorship from experts in pain biology and psychology, machine learning, and clinical regional anesthesia, the candidate is well-positioned to become an independently-funded researcher in the field of perioperative pain prediction. In Specific Aim 1 of this study, we will test the hypothesis that Machine Learning Classifiers can accurately predict severe post-operative pain in patients undergoing cancer surgery. This portion of the study will retrospectively test MLC's ability to predict severe pain on post-operatie day 1. An array of MLC's will be tested amongst each other, both with and without the implementation of text analytics. Additionally, all MLC's will be compared against more traditional multiple variable regression techniques such as logistic regression. In Specific Aim 2, we will test the hypothesis that the addition of prospectively obtained attributes and instances will permit continued improvement in MLC performance. This prospective portion of the study will examine the role of prospectively-obtained psychometric attributes, as well as the ability of MLC's to learn and adapt their accuracy during continued refinements to surgical and anesthetic care. PUBLIC HEALTH RELEVANCE: Up to 40% of patients undergoing surgery will suffer from moderate to severe postoperative pain. While regional anesthetics offer the possibility of a pain-free surgical experience, their use is limited by their inherent risk and cost. This project aims t accurately determine which surgical patients will suffer from severe acute postoperative pain through the use of advanced mathematical algorithms, permitting anesthesiologists and surgeons to efficiently target pain therapies in a cost-effective manner.
描述(由申请人提供):高达 40% 的接受手术的患者报告术后有中度至重度疼痛。开发临床决策支持系统以允许对这部分患​​者进行术前干预可能会对他们的康复产生深远的影响,并可能对其长期结果产生深远的影响。为了准确预测术后严重疼痛,我们建议使用机器学习分类器 (MLC),这些分类算法采用一系列新颖的搜索和分类方法,随着新信息的出现不断更新其性能。该奖项将允许申请人完成严格的教学课程,强调分类理论、算法评估和临床决策支持系统的开发。这些研究的性质使它们远远超出了传统医学教育的范围。通过保护疼痛生物学和心理学、机器学习和临床局部麻醉专家的持续指导时间,候选人有能力成为围手术期疼痛预测领域的独立资助研究员。在本研究的具体目标 1 中,我们将测试机器学习分类器可以准确预测接受癌症手术的患者术后严重疼痛的假设。该研究的这一部分将回顾性测试 MLC 预测术后第一天剧烈疼痛的能力。将在实施或不实施文本分析的情况下对一系列 MLC 进行相互测试。此外,所有 MLC 都将与更传统的多变量回归技术(例如逻辑回归)进行比较。在具体目标 2 中, 我们将测试以下假设:添加预期获得的属性和实例将允许 MLC 性能持续改进。该研究的前瞻性部分将检查前瞻性获得的心理测量属性的作用,以及 MLC 在手术和麻醉护理持续改进过程中学习和调整其准确性的能力。 公共卫生相关性:高达 40% 的手术患者会遭受中度至重度术后疼痛。虽然局部麻醉剂可以提供无痛手术体验,但其使用受到其固有风险和成本的限制。该项目旨在通过使用先进的数学算法准确确定哪些手术患者将遭受严重的急性术后疼痛,从而使麻醉师和外科医生能够以具有成本效益的方式有效地进行疼痛治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patrick J Tighe其他文献

Patrick J Tighe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patrick J Tighe', 18)}}的其他基金

Perioperative Cognitive Anesthesia Network Extension for Socially Vulnerable Older Adults
针对社会弱势老年人的围手术期认知麻醉网络扩展
  • 批准号:
    10633174
  • 财政年份:
    2021
  • 资助金额:
    $ 15.2万
  • 项目类别:
Perioperative Cognitive Anesthesia Network Extension for Socially Vulnerable Older Adults
针对社会弱势老年人的围手术期认知麻醉网络扩展
  • 批准号:
    10281822
  • 财政年份:
    2021
  • 资助金额:
    $ 15.2万
  • 项目类别:
Perioperative Cognitive Anesthesia Network Extension for Socially Vulnerable Older Adults
针对社会弱势老年人的围手术期认知麻醉网络扩展
  • 批准号:
    10475724
  • 财政年份:
    2021
  • 资助金额:
    $ 15.2万
  • 项目类别:
Finding Good TEMporal PostOperative pain Signatures (TEMPOS)
寻找良好的颞叶术后疼痛特征 (TEMPOS)
  • 批准号:
    8863868
  • 财政年份:
    2015
  • 资助金额:
    $ 15.2万
  • 项目类别:
Finding Good TEMporal PostOperative pain Signatures (TEMPOS)
寻找良好的颞叶术后疼痛特征 (TEMPOS)
  • 批准号:
    9291477
  • 财政年份:
    2015
  • 资助金额:
    $ 15.2万
  • 项目类别:
Use of Machine Learning Classifiers to Forecast Severe Acute Postoperative Pain F
使用机器学习分类器预测严重急性术后疼痛 F
  • 批准号:
    8901203
  • 财政年份:
    2012
  • 资助金额:
    $ 15.2万
  • 项目类别:
Use of Machine Learning Classifiers to Forecast Severe Acute Postoperative Pain F
使用机器学习分类器预测严重急性术后疼痛 F
  • 批准号:
    8505014
  • 财政年份:
    2012
  • 资助金额:
    $ 15.2万
  • 项目类别:
Use of Machine Learning Classifiers to Forecast Severe Acute Postoperative Pain F
使用机器学习分类器预测严重急性术后疼痛 F
  • 批准号:
    8677604
  • 财政年份:
    2012
  • 资助金额:
    $ 15.2万
  • 项目类别:

相似国自然基金

电针调控Nrf2表达抑制巨噬细胞铁死亡进程缓解急性痛风性关节炎疼痛的机制研究
  • 批准号:
    82305369
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
前扣带回沉默突触激活介导急性疼痛慢性化的环路和细胞机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
围术期睡眠剥夺激活外周感觉神经元芳香烃受体致术后急性疼痛慢性化
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
从急性到慢性下腰腿痛:默认网络对疼痛的编码作用及其机制的MRI研究
  • 批准号:
    82160331
  • 批准年份:
    2021
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
  • 批准号:
    10825737
  • 财政年份:
    2023
  • 资助金额:
    $ 15.2万
  • 项目类别:
Project 3: Intraarticular Mineralization
项目3:关节内矿化
  • 批准号:
    10555688
  • 财政年份:
    2023
  • 资助金额:
    $ 15.2万
  • 项目类别:
Quantifying neural variability and learning during real world brain-computer interface use
量化现实世界脑机接口使用过程中的神经变异和学习
  • 批准号:
    10838152
  • 财政年份:
    2023
  • 资助金额:
    $ 15.2万
  • 项目类别:
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
  • 批准号:
    10759550
  • 财政年份:
    2023
  • 资助金额:
    $ 15.2万
  • 项目类别:
Development of the OpiAID strength band platform
OpiAID 力量带平台的开发
  • 批准号:
    10684399
  • 财政年份:
    2023
  • 资助金额:
    $ 15.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了