Predictive Modeling for Treatment of Upper Airway Obstruction in Young Children

幼儿上呼吸道阻塞治疗的预测模型

基本信息

项目摘要

DESCRIPTION (provided by applicant): Infants and children with abnormalities of the upper airway are at risk for hypoxia, respiratory insufficiency and long term morbidity. Multiple levels of airway obstruction encountered in these disorders lead to life threatening difficulties in air exchange, problems with coordination of swallowing, growth, and speech development. In these airway disorders, therapy is typically directed by the clinician's experience and preference, rather than on normalized physiologic or anatomic metrics. Quantitative methods of evaluating and determining optimal management of these upper airway anomalies would be of tremendous benefit for improved clinical care and outcomes. New research tools can now measure computational fluid dynamics. These fluid-structure interaction models allow for the merger of dynamic anatomy with physiologic measures by creating a virtual model of the airway with computed measures of airflow, wall shear stress, pressure distribution, and airway wall shape change. This computational model can be virtually modified to reflect medical intervention, surgical techniques, and normal growth, which can predict changes in airway wall compliance, new airflow patterns, pressure distribution, and other physiologic variables to yield expected clinical results prior to intervention. Improvements in outcomes when computational modeling tools are used in pediatric upper airway intervention planning is enormous, particularly in complicated clinical scenarios. For purposes of model development, we focus on two very specific, commonly encountered, high risk anomalies encountered at our center, Pierre Robin sequence and subglottic stenosis. Normative data regarding growth and development of the upper airway will be studied. We hypothesize that a functional computational model that simulates the mechanical and aerodynamic behavior of the upper airway in children with Pierre Robin sequence and laryngeal lesions (e.g. subglottic stenosis) can be used as an effective diagnostic and treatment planning tool, reducing failures of initial treatment and avoiding potentially unnecessary future complications and interventions. Specific aims for this proposal are to: (1a) develop a functional computational model of the pediatric upper airway which can be used for diagnosis and to predict treatment outcomes in children < 10 years of age with Pierre Robin sequence and subglottic stenosis; data and modeling of normal airways will be obtained to help develop a Pediatric Airway Anatomical Atlas describing the aging airway; an integrated Virtual Pediatric Airway Workbench will also be developed (1b) validate the functional computational model using anatomic and physiologic measures that assess airway patency and airflow limitation in the upper airway in children < 10 years of age with Pierre Robin Sequence and subglottic stenosis and (2) apply the computational model to children being evaluated for Pierre Robin Sequence and subglottic stenosis, and determine the ability of the model to accurately predict results of various potential interventions on anatomic and physiologic metrics. PUBLIC HEALTH RELEVANCE: Upper airway problems in young children may lead to life threatening respiratory difficulties, poor growth, aspiration, delay in speech development and long term morbidity. Two common upper airway anomalies are Pierre Robin sequence (small jaw, cleft palate, downward displacement of the tongue) and subglottic stenosis (narrowing of the airway below the vocal cords). Management of these children is typically directed by the clinician's experience and preference, rather than on published protocols or quantitative measures of airway physiology and anatomy. Improved methods of evaluating and determining best management would benefit clinical care and outcomes. Novel research tools that measure structure, airflow and essentially create a virtual model of the airway would significantly improve care of these children. These computational models are now possible and can be modified to reflect medical or surgical intervention as well as normal growth and development. Improved quantitative measurements through computational modeling have enormous potential to significantly improve care in children with complicated upper airways. The researchers in this study hypothesize that a functional computational model may be developed that is similar to the mechanical and aerodynamic behavior of the upper airway in infants with complicated upper airways, specifically children with Pierre Robin Sequence and subglottic stenosis. The researchers also hypothesize that this model could be used as an effective diagnostic/treatment planning tool; thereby, reducing failed treatment and avoiding unnecessary future complications or interventions. Specific aims for this proposal are to: (1a) develop a functional computational model of the pediatric upper airway which can be used for diagnosis and to predict treatment outcomes in children < 10 years of age with Pierre Robin sequence and subglottic stenosis; data and modeling of normal airways will also be obtained to develop a Pediatric Airway Anatomical Atlas describing the aging airway and a workbench of the pediatric airway will also be developed allowing the physician to hear airway sounds and "virtually" interact with the airway (1b) validate the functional computational model using clinical, anatomic and physiologic measures that evaluate airway size and obstruction in the upper airway in children < 10 years of age with Pierre Robin Sequence and subglottic stenosis and (2) apply the computational model to infants and children being evaluated for Pierre Robin Sequence and subglottic stenosis, and determine the ability of the model to accurately predict the results of various potential interventions on clinical outcomes. The long term implications for the application of computational modeling for the entire airway, adult and pediatric, and to the broader range of pathologic airway problems has the potential to change the current approach to management. (End of Abstract)
描述(由申请人提供):患有上呼吸道异常的婴儿和儿童面临缺氧、呼吸功能不全和长期发病的风险。这些疾病中遇到的多级气道阻塞会导致危及生命的空气交换困难、吞咽协调问题、生长和语言发育问题。在这些气道疾病中,治疗通常根据临床医生的经验和偏好来指导,而不是根据标准化的生理或解剖指标。评估和确定这些上呼吸道异常的最佳治疗的定量方法将对改善临床护理和结果带来巨大益处。新的研究工具现在可以测量计算流体动力学。这些流体-结构相互作用模型通过创建气道虚拟模型以及气流、壁剪切应力、压力分布和气道壁形状变化的计算测量值,实现动态解剖学与生理测量的合并。该计算模型可以进行虚拟修改,以反映医疗干预、手术技术和正常生长,从而可以预测气道壁顺应性的变化、新的气流模式、压力分布和其他生理变量,以在干预之前产生预期的临床结果。当计算建模工具用于儿科上呼吸道干预计划时,结果的改善是巨大的,特别是在复杂的临床情况下。出于模型开发的目的,我们重点关注我们中心遇到的两种非常具体、常见的高风险异常:皮埃尔·罗宾序列和声门下狭窄。将研究有关上呼吸道生长和发育的规范数据。我们假设,模拟 Pierre Robin 序列和喉部病变(例如声门下狭窄)儿童上呼吸道机械和空气动力学行为的功能计算模型可以用作有效的诊断和治疗计划工具,减少初始治疗和治疗的失败。避免未来可能不必要的并发症和干预。该提案的具体目标是: (1a) 开发儿科上呼吸道的功能计算模型,可用于诊断和预测 Pierre Robin 序列和声门下狭窄儿童 <10 岁的治疗结果;将获得正常气道的数据和模型,以帮助开发描述老化气道的儿科气道解剖图谱;还将开发一个集成的虚拟儿科气道工作台 (1b) 使用解剖学和生理学测量来验证功能计算模型,评估 10 岁以下儿童的气道通畅性和上呼吸道气流受限情况,并采用 Pierre Robin 序列和声门下狭窄,以及( 2) 将计算模型应用于正在评估皮埃尔罗宾序列和声门下狭窄的儿童,并确定模型准确预测各种潜在结果的能力对解剖学和生理学指标的干预。公共卫生相关性:幼儿的上呼吸道问题可能会导致危及生命的呼吸困难、生长不良、误吸、语言发育迟缓和长期发病。两种常见的上呼吸道异常是皮埃尔·罗宾序列(小颌、腭裂、舌头向下移位)和声门下狭窄(声带下方气道变窄)。这些儿童的管理通常由临床医生的经验和偏好指导,而不是根据已发布的方案或气道生理学和解剖学的定量测量。改进评估和确定最佳管理的方法将有利于临床护理和结果。测量结构、气流并本质上创建气道虚拟模型的新颖研究工具将显着改善对这些儿童的护理。这些计算模型现在是可能的,并且可以进行修改以反映医疗或手术干预以及正常的生长和发育。通过计算模型改进定量测量具有巨大的潜力,可以显着改善患有复杂上呼吸道的儿童的护理。这项研究的研究人员假设,可能会开发出一种功能计算模型,该模型类似于具有复杂上呼吸道的婴儿(特别是患有皮埃尔·罗宾序列和声门下狭窄的儿童)的上呼吸道机械和空气动力学行为。研究人员还假设该模型可以用作有效的诊断/治疗计划工具;从而减少失败的治疗并避免未来不必要的并发症或干预。该提案的具体目标是: (1a) 开发儿科上呼吸道的功能计算模型,可用于诊断和预测 Pierre Robin 序列和声门下狭窄儿童 <10 岁的治疗结果;还将获得正常气道的数据和模型,以开发描述老化气道的儿科气道解剖图谱,还将开发儿科气道工作台,使医生能够听到气道声音并与气道“虚拟”互动 (1b)使用临床、解剖和生理测量验证功能计算模型,通过 Pierre Robin 序列和声门下评估 10 岁以下儿童的气道大小和上气道阻塞情况(2) 将计算模型应用于正在评估 Pierre Robin 序列和声门下狭窄的婴儿和儿童,并确定该模型准确预测各种潜在干预措施对临床结果的结果的能力。计算模型对成人和儿童整个气道以及更广泛的病理性气道问题的应用的长期影响有可能改变当前的管理方法。 (摘要完)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephanie Duggins Davis其他文献

Stephanie Duggins Davis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephanie Duggins Davis', 18)}}的其他基金

Pediatrics & Pulmonary Network: Improving Health Together
儿科
  • 批准号:
    10469209
  • 财政年份:
    2022
  • 资助金额:
    $ 89.61万
  • 项目类别:
Viral Pathogenesis of Early Cystic Fibrosis Lung Disease
早期囊性纤维化肺病的病毒发病机制
  • 批准号:
    8410771
  • 财政年份:
    2012
  • 资助金额:
    $ 89.61万
  • 项目类别:
Viral Pathogenesis of Early Cystic Fibrosis Lung Disease
早期囊性纤维化肺病的病毒发病机制
  • 批准号:
    8879196
  • 财政年份:
    2012
  • 资助金额:
    $ 89.61万
  • 项目类别:
Viral Pathogenesis of Early Cystic Fibrosis Lung Disease
早期囊性纤维化肺病的病毒发病机制
  • 批准号:
    8688346
  • 财政年份:
    2012
  • 资助金额:
    $ 89.61万
  • 项目类别:
Viral Pathogenesis of Early Cystic Fibrosis Lung Disease
早期囊性纤维化肺病的病毒发病机制
  • 批准号:
    8550127
  • 财政年份:
    2012
  • 资助金额:
    $ 89.61万
  • 项目类别:
Predictive Modeling for Treatment of Upper Airway Obstruction in Young Children
幼儿上呼吸道阻塞治疗的预测模型
  • 批准号:
    8321392
  • 财政年份:
    2010
  • 资助金额:
    $ 89.61万
  • 项目类别:
Predictive Modeling for Treatment of Upper Airway Obstruction in Young Children
幼儿上呼吸道阻塞治疗的预测模型
  • 批准号:
    8144775
  • 财政年份:
    2010
  • 资助金额:
    $ 89.61万
  • 项目类别:
Predictive Modeling for Treatment of Upper Airway Obstruction in Young Children
幼儿上呼吸道阻塞治疗的预测模型
  • 批准号:
    8527828
  • 财政年份:
    2010
  • 资助金额:
    $ 89.61万
  • 项目类别:
Primary Ciliary Dyskinesia and Overlapping Syndromes
原发性纤毛运动障碍和重叠综合征
  • 批准号:
    8010351
  • 财政年份:
    2010
  • 资助金额:
    $ 89.61万
  • 项目类别:
IU training Program in Molecular Physiology and Clinical Mechanisms of Lung Disea
IU 肺部疾病分子生理学和临床机制培训项目
  • 批准号:
    8976284
  • 财政年份:
    2009
  • 资助金额:
    $ 89.61万
  • 项目类别:

相似国自然基金

基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
  • 批准号:
    82372499
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
  • 批准号:
    82373465
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
  • 批准号:
    82300208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
  • 批准号:
    82302025
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigating relationships between problematic social media use and binge-eating disorder to inform precision guidance for adolescents
调查有问题的社交媒体使用与暴食症之间的关系,为青少年提供精准指导
  • 批准号:
    10815182
  • 财政年份:
    2023
  • 资助金额:
    $ 89.61万
  • 项目类别:
Fathers and Children Exercising Together (FACEiT)
父亲和孩子一起锻炼 (FACEiT)
  • 批准号:
    10789457
  • 财政年份:
    2023
  • 资助金额:
    $ 89.61万
  • 项目类别:
Undernutrition, microbiota maturation, and adaptive immunity in Bangladeshi children
孟加拉国儿童的营养不良、微生物群成熟和适应性免疫
  • 批准号:
    10718949
  • 财政年份:
    2023
  • 资助金额:
    $ 89.61万
  • 项目类别:
Data-Driven Exploration of Exposomic Influences on the Onset of Alcohol Use During Adolescence
数据驱动的暴露体对青春期饮酒影响的探索
  • 批准号:
    10826809
  • 财政年份:
    2023
  • 资助金额:
    $ 89.61万
  • 项目类别:
Moving beyond the Pain-Suicidality Link: An Investigation of Fluctuations in Social Threat and Neural Response to Social Threat in Momentary Pain and Proximal Risk for Suicidal Ideation in Adolescence
超越疼痛与自杀的联系:对青春期短暂疼痛和自杀意念的近端风险中社会威胁的波动和对社会威胁的神经反应的调查
  • 批准号:
    10633908
  • 财政年份:
    2023
  • 资助金额:
    $ 89.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了