The Endothelial Glycocalyx: Its Structure and Function and as a Mechanotransducer
内皮糖萼:其结构和功能以及作为机械传感器
基本信息
- 批准号:8247713
- 负责人:
- 金额:$ 62.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-15 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAmino Acid SequenceAortaAtherosclerosisBindingBiomedical EngineeringBlood VesselsBlood flowCaveolaeCell LineCellsCharacteristicsChondroitinasesComplementConfocal MicroscopyCore ProteinCytoskeletonDehydrationDiabetes MellitusDiseaseElectron MicroscopyEndothelial CellsEnzymesEpoprostenolEventFocal AdhesionsFunctional disorderGlycocalyxGlycosaminoglycansGlypicanGoalsGoldHealthHeparan Sulfate ProteoglycanHeparin LyaseHeparitin SulfateHyaluronic AcidHyaluronidaseHypertensionIn VitroInorganic SulfatesKnowledgeLabelLiquid substanceMediatingMembraneMethodsMicroscopyMolecular BiologyMorphologic artifactsMusNeuraminidaseNitric OxidePlasma ProteinsProcessProductionProstaglandins IProteinsProteoglycanPublic HealthRNA InterferenceResearchResearch Project GrantsSeriesSialic AcidsSignaling MoleculeStructureSurfaceTechnologyThickTimeTransmission Electron MicroscopyUnspecified or Sulfate Ion SulfatesVascular DiseasesVasodilator AgentsWorkcombatin vivoinsightknockout animalmacromoleculeproteoglycan core proteinpublic health relevanceresearch studyresponseshear stresssmall hairpin RNAsyndecan
项目摘要
DESCRIPTION (provided by applicant): The luminal surfaces of endothelial cells (ECs) that line our vasculature are coated with a glycocalyx of membrane-bound macromolecules comprised of sulfated proteoglycans, hyaluronic acid, sialic acids, glycocproteins and plasma proteins that adhere to this surface matrix. The endothelial glycocalyx layer (EGL) provides a multifunctional coating to the vasculature that is degraded in disease states such as atherosclerosis and diabetes. Because of dehydration artifacts associated with conventional electron microscopy, even such rudimentary characteristics as the thickness of the layer have not been firmly established. In vivo and in vitro studies have, however, shown that heparan sulfate proteoglycans mediate endothelial remodeling (cell elongation and alignment) in response to fluid shear stress and along with hyaluronic acid control vital mechanotransduction events such as fluid shear-induced stimulation of nitric oxide production, but the core proteins that are involved in these characteristic responses are not known. To address these fundamental questions that are crucial for our understanding of vascular function in health and disease, we will pursue the following studies in the proposed research: To elucidate the structure of the endothelial glycocalyx layer (EGL) we will apply, for the first time, cryo-transmission electron microscopy (cryo-TEM) in conjunction with confocal microscopy to determine its thickness and organization. To determine the proteoglycan core proteins that mediate EC remodeling and mechanotransduction in response to fluid shear stress we will use glycosaminoglycan (GAG) degrading enzymes, RNA interference technology and adhesion blocking amino acid sequences in vitro and knockout animals in vivo to deconstruct these processes. To carry out the projects in this Bioengineering Research Grant (BRG), we have organized a research team with core expertise in bioengineering including: in vitro shear experiments (Tarbell), and in vivo shear experiments (Fu) that is complemented by expertise in microscopy and molecular biology (Spray).
PUBLIC HEALTH RELEVANCE: The research is important to public health because the endothelial glycocalyx layer (EGL) provides a multifunctional coating to the vasculature that is degraded in disease states such as atherosclerosis and diabetes. Degradation of the EGL leads to vasoregulatory dysfunction through, for example, loss of blood flow-induced stimulation of the potent vasodilator, nitric oxide. Knowledge of EGL structure and the core proteins and glycosaminoglycans involved in mechanotransduction/remodeling will be required if methods are to be developed to re-constitute or reinforce the EGL. A re-constituted EGL will restore critical vasoregulatory functions, thus combating disease. The foundational work proposed in this application is essential for translational work that will follow as part of the long range goals of this project.
描述(由申请人提供):排列在我们脉管系统中的内皮细胞 (EC) 的管腔表面涂有膜结合大分子的糖萼,这些大分子由硫酸化蛋白聚糖、透明质酸、唾液酸、糖蛋白和血浆蛋白组成,粘附在该表面上矩阵。内皮糖萼层(EGL)为脉管系统提供了多功能涂层,该涂层在动脉粥样硬化和糖尿病等疾病状态下会降解。由于与传统电子显微镜相关的脱水伪影,甚至诸如层厚度之类的基本特征也尚未确定。然而,体内和体外研究表明,硫酸乙酰肝素蛋白聚糖介导内皮重塑(细胞伸长和排列)以响应流体剪切应力,并与透明质酸一起控制重要的机械转导事件,例如流体剪切诱导的一氧化氮产生的刺激,但参与这些特征反应的核心蛋白尚不清楚。为了解决这些对于我们理解健康和疾病中的血管功能至关重要的基本问题,我们将在拟议的研究中进行以下研究:为了阐明内皮糖萼层(EGL)的结构,我们将首次应用,冷冻透射电子显微镜 (cryo-TEM) 与共焦显微镜结合以确定其厚度和组织。为了确定响应流体剪切应力介导 EC 重塑和机械转导的蛋白聚糖核心蛋白,我们将使用糖胺聚糖 (GAG) 降解酶、RNA 干扰技术和体外粘附阻断氨基酸序列以及体内敲除动物来解构这些过程。 为了开展生物工程研究补助金(BRG)中的项目,我们组织了一支具有生物工程核心专业知识的研究团队,包括:体外剪切实验(Tarbell)和体内剪切实验(Fu),并辅以显微镜专业知识和分子生物学(喷雾)。
公共健康相关性:这项研究对公共健康很重要,因为内皮糖萼层 (EGL) 为脉管系统提供了多功能涂层,该涂层在动脉粥样硬化和糖尿病等疾病状态下会降解。 EGL 的降解会导致血管调节功能障碍,例如,由于血流减少而导致强效血管舒张剂一氧化氮的刺激。如果要开发重建或增强 EGL 的方法,则需要了解 EGL 结构以及参与机械转导/重塑的核心蛋白和糖胺聚糖。重组的 EGL 将恢复关键的血管调节功能,从而对抗疾病。本申请中提出的基础工作对于转化工作至关重要,转化工作将作为该项目长期目标的一部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN M TARBELL其他文献
JOHN M TARBELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN M TARBELL', 18)}}的其他基金
The Endothelial Glycocalyx: Its Structure and Function and as a Mechanotransducer
内皮糖萼:其结构和功能以及作为机械传感器
- 批准号:
7887862 - 财政年份:2010
- 资助金额:
$ 62.1万 - 项目类别:
The Endothelial Glycocalyx: Its Structure and Function and as a Mechanotransducer
内皮糖萼:其结构和功能以及作为机械传感器
- 批准号:
8289879 - 财政年份:2010
- 资助金额:
$ 62.1万 - 项目类别:
The Endothelial Glycocalyx: Its Structure and Function and as a Mechanotransducer
内皮糖萼:其结构和功能以及作为机械传感器
- 批准号:
8056011 - 财政年份:2010
- 资助金额:
$ 62.1万 - 项目类别:
The Endothelial Glycocalyx: Its Structure and Function and as a Mechanotransducer
内皮糖萼:其结构和功能以及作为机械传感器
- 批准号:
8452129 - 财政年份:2010
- 资助金额:
$ 62.1万 - 项目类别:
The Endothelial Glycocalyx: Its Structure and Function and as a Mechanotransducer
内皮糖萼:其结构和功能以及作为机械传感器
- 批准号:
8825611 - 财政年份:2010
- 资助金额:
$ 62.1万 - 项目类别:
Hemodynamic Forces Affect Endothelial Cell Pheotype in Arterial Disease
血流动力学影响动脉疾病中的内皮细胞表型
- 批准号:
7610927 - 财政年份:2008
- 资助金额:
$ 62.1万 - 项目类别:
Hemodynamic Forces Affect Endothelial Cell Pheotype in Arterial Disease
血流动力学影响动脉疾病中的内皮细胞表型
- 批准号:
7464627 - 财政年份:2008
- 资助金额:
$ 62.1万 - 项目类别:
Hemodynamic Forces Affect Endothelial Cell Pheotype in Arterial Disease
血流动力学影响动脉疾病中的内皮细胞表型
- 批准号:
7788858 - 财政年份:2008
- 资助金额:
$ 62.1万 - 项目类别:
CCNY/MSKCC Biomedical Engineering Partnership
CCNY/MSKCC 生物医学工程合作伙伴
- 批准号:
7128549 - 财政年份:2005
- 资助金额:
$ 62.1万 - 项目类别:
CCNY/MSKCC Biomedical Engineering Partnership
CCNY/MSKCC 生物医学工程合作伙伴
- 批准号:
7283534 - 财政年份:2005
- 资助金额:
$ 62.1万 - 项目类别:
相似国自然基金
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ROS清除型动态粘附水凝胶的制备及其在声带粘连防治中的作用与机制研究
- 批准号:82301292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Sialic acid mediated interbacterial adhesion among oral bacteria
唾液酸介导口腔细菌间的细菌间粘附
- 批准号:
10607228 - 财政年份:2022
- 资助金额:
$ 62.1万 - 项目类别:
Synthetic Mucins for Structural and Compositional Studies of Mucus Gels
用于粘液凝胶结构和成分研究的合成粘蛋白
- 批准号:
9760806 - 财政年份:2019
- 资助金额:
$ 62.1万 - 项目类别:
Targeting Platelet Endocytosis and Exocytosis to Control Thrombosis
靶向血小板胞吞作用和胞吐作用来控制血栓形成
- 批准号:
10046272 - 财政年份:2017
- 资助金额:
$ 62.1万 - 项目类别:
Targeting Platelet Endocytosis and Exocytosis to Control Thrombosis
靶向血小板胞吞作用和胞吐作用来控制血栓形成
- 批准号:
10392316 - 财政年份:2017
- 资助金额:
$ 62.1万 - 项目类别: