Building on the success of the adoptive immunotherapy of cancer

以癌症过继免疫疗法的成功为基础

基本信息

项目摘要

Adoptive immunotherapy for cancer: building on success Nicholas P. Restifo, MD, National Cancer Institute Substantial progress has been made in our understanding of the molecular and cellular bases of T cell mediated anti-tumor responses. T cells are potent effectors of the adaptive anti-tumor immune response. Some target antigens recognized by tumor-reactive CD8+ T cells are non-mutated self-antigens that are also expressed by tumor cells. The molecular signals that modulate T cell activation, function and memory are being elucidated. Both positive and negative signals from co-stimulatory molecules have been shown to shape the anti-tumor response. Cytokines, including those with receptors that contain the common cytokine-receptor gamma chain have been shown to alter the programming of effector CD8+ T cells. Therapeutic cancer vaccines, designed to activate the anti-tumor immune response in vivo are still under development. Adoptive cell transfer (ACT) therapies activate T cells ex vivo prior to the transfer back to patients. Preclinical studies have indicated that immune ablation is an effective preconditioning regimen that can increase T cell responses after adoptive transfer. Adoptive transfer of anti-tumor T cell after non-myeloablative but lymphodepleting systemic chemotherapy can induce clear and reproducible responses in a substantial percentage (50%) of treated patients who have multivisceral, bulky melanoma that is refractory to standard treatments including chemotherapy, radiation and cytokine therapies. The specific mechanisms that contribute to the impact of a lymphodepleting pre-conditioning regimen are now being elucidated. Although it seems counter-intuitive that the efficacy of ACT-based tumor immunotherapy can be improved by the removal of the host immune system, several mechanisms might underlie the augmented efficacy of tumor-reactive T cells in the lymphopenic environment. These factors include the elimination of immunosuppressive cells such as CD4+CD25+ regulatory T (TReg) cells, the depletion of endogenous cells that compete for activating cytokines and the increased function and availability of antigen-presenting cells (APCs) due to the activation of toll-like receptors, specifically the engagement of TLR4 that results from bacterial translocation. Emerging findings from both mouse studies and clinical trials indicate that intrinsic properties related to the differentiation state of the adoptively transferred T cell populations are critical to the success of ACT-based approaches. CD8+ T cell subsets in both mice and humans are characterized by a progressive pathway of CD8+ T cell differentiation. Mouse models indicate that CD8+ T cells that acquired terminal effector properties have increased anti-tumor activity in vitro but are less effective at triggering tumor regression in vivo. Less differentiated, central-memory-like T cells might proliferate and become fully activated in the lymphopenic environment, which is rife with homeostatic cytokines such as IL-7 and IL-15. Evidence in humans indicates that the expression of CD27 and long telomeres by adoptively transferred T cells are associated with clinical effectiveness. Findings in mice emphasize that early effector T cells are more effective than late effector T cells. In humans, standard rapid expansion protocols that employ CD3-specific antibody and high-doses of IL-2 with irradiated allogeneic feeder cell may result in the differentiation of tumor-specific CD8+ T cells to an intermediate and late effector state. Cytokines, acting in concert with signals through the TCR and co-stimulatory molecules, can function as accelerators or brakes for T cell proliferation and differentiation. IL-2 has been shown to be an effective T cell growth factor but has undesirable effects including the ability to decrease the expression of lymph node homing molecules and promote the terminal differentiation of T cells, predisposing them to activation-induced cell death. Other cytokines with a receptor that contains c such as IL-7, IL-15 and IL-21 may be useful in vitro and in vivo as support for the activation or proliferation of tumor-reactive CD8+ T cell populations for ACT. Tumor-specific T cells can be generated by genetically engineering mature peripheral blood T cells in mouse and in man. The affinity of the TCR selected for transduction, the level of transduced TCR expressed on the cell surface and the differentiation state of the transduced T cells used for ACT might critically contribute to the success of trials following TCR transduction. Naturally occurring T cells expressing high affinity TCRs specific for self/tumor antigens might be difficult to obtain owing to intra-thymic deletion, however generation of high affinity TCRs can be performed in vivo in immunized HLA-A2 transgenic mice or in vitro by phage display of TCRs containing degenerate complementarity-determining regions. Integration of retrovirally-delivered sequences requires active division of target cells, a process that also promotes T cell differentiation but lentiviral vectors are less dependent upon active cell division and might be used to transduce high-affinity TCRs into T cells without driving differentiation. Delivery of both the alpha and beta chains of the TCR directs expression of the intact TCR, however, pairing with endogenous TCR alpha and beta chains can occur, thereby reducing the surface density of tumor-specific TCR. Genes other that TCR have been proposed for transduction of tumor-reactive T cells in order to improve their quality and functionality, including co-stimulatory molecules, anti-apoptotic molecules, pro-inflammatory or homeostatic cytokines and chemokine receptors. Transduction with genes encoding TCRs specific for known epitopes allows the concurrent employment of vaccines in order to enhance the anti-tumor response of adoptively transferred T cells. Most importantly, the genetic modification of anti-tumor T cells makes it possible for Immunotherapies to treat virtually any cancer histology.
癌症过继性免疫疗法:以成功为基础 Nicholas P. Restifo,医学博士,美国国家癌症研究所 我们对 T 细胞介导的抗肿瘤反应的分子和细胞基础的理解已经取得了实质性进展。 T 细胞是适应性抗肿瘤免疫反应的有效效应器。肿瘤反应性 CD8+ T 细胞识别的一些靶抗原是非突变的自身抗原,也由肿瘤细胞表达。调节 T 细胞激活、功能和记忆的分子信号正在被阐明。共刺激分子的正信号和负信号已被证明可以塑造抗肿瘤反应。细胞因子,包括那些含有共同细胞因子受体伽马链的受体,已被证明可以改变效应 CD8+ T 细胞的编程。旨在激活体内抗肿瘤免疫反应的治疗性癌症疫苗仍在开发中。过继细胞转移 (ACT) 疗法在体外激活 T 细胞,然后再转移回患者体内。临床前研究表明,免疫消融是一种有效的预处理方案,可以增加过继转移后的 T 细胞反应。在非清髓但淋巴细胞清除的全身化疗后,抗肿瘤 T 细胞的过继转移可以在相当大比例 (50%) 的接受治疗的患有多内脏大块黑色素瘤的患者中诱导明确且可重复的反应,这些患者对标准治疗(包括化疗、放疗和化疗)难以治疗。细胞因子疗法。 目前正在阐明导致淋巴细胞清除预处理方案产生影响的具体机制。尽管通过去除宿主免疫系统可以提高基于 ACT 的肿瘤免疫疗法的疗效似乎违反直觉,但在淋巴细胞减少环境中肿瘤反应性 T 细胞增强疗效的基础可能有多种机制。这些因素包括免疫抑制细胞(例如 CD4+CD25+ 调节性 T (TReg) 细胞)的消除、竞争激活细胞因子的内源性细胞的消耗以及由于 toll 激活而导致的抗原呈递细胞 (APC) 功能和可用性的增加。类受体,特别是细菌易位导致的 TLR4 的参与。小鼠研究和临床试验的新发现表明,与过继转移 T 细胞群分化状态相关的内在特性对于基于 ACT 的方法的成功至关重要。 小鼠和人类的 CD8+ T 细胞亚群的特征是 CD8+ T 细胞分化的渐进途径。小鼠模型表明,获得末端效应特性的 CD8+ T 细胞在体外增强了抗肿瘤活性,但在体内触发肿瘤消退的效果较差。分化程度较低的中枢记忆样 T 细胞可能会在淋巴细胞减少的环境中增殖并完全激活,该环境中充满了 IL-7 和 IL-15 等稳态细胞因子。人类证据表明,过继转移的 T 细胞表达 CD27 和长端粒与临床有效性相关。在小鼠身上的研究结果强调,早期效应 T 细胞比晚期效应 T 细胞更有效。在人类中,采用 CD3 特异性抗体和高剂量 IL-2 以及经照射的同种异体饲养细胞的标准快速扩增方案可能会导致肿瘤特异性 CD8+ T 细胞分化为中间和晚期效应状态。 细胞因子通过 TCR 和共刺激分子与信号协同作用,可以充当 T 细胞增殖和分化的加速器或制动器。 IL-2 已被证明是一种有效的 T 细胞生长因子,但具有不良影响,包括降低淋巴结归巢分子的表达并促进 T 细胞的终末分化,使它们易于激活诱导的细胞死亡。其他具有包含 αc 受体的细胞因子(例如 IL-7、IL-15 和 IL-21)可能在体外和体内有用,可支持 ACT 的肿瘤反应性 CD8+ T 细胞群的激活或增殖。肿瘤特异性 T 细胞可以通过基因工程改造小鼠和人类的成熟外周血 T 细胞来产生。选择用于转导的 TCR 亲和力、细胞表面表达的转导 TCR 水平以及用于 ACT 的转导 T 细胞的分化状态可能对 TCR 转导后试验的成功做出关键贡献。由于胸腺内缺失,天然存在的表达针对自身/肿瘤抗原的高亲和力 TCR 的 T 细胞可能难以获得,但是高亲和力 TCR 的生成可以在免疫 HLA-A2 转基因小鼠体内或通过噬菌体展示在体外进行含有简并互补决定区的TCR。逆转录病毒传递序列的整合需要靶细胞的主动分裂,这一过程也促进 T 细胞分化,但慢病毒载体较少依赖主动细胞分裂,可用于将高亲和力 TCR 转导至 T 细胞而不驱动分化。 TCR 的 α 链和 β 链的传递指导完整 TCR 的表达,然而,可能会与内源性 TCR α 链和 β 链配对,从而降低肿瘤特异性 TCR 的表面密度。 TCR 以外的基因已被提议用于转导肿瘤反应性 T 细胞,以提高其质量和功能,包括共刺激分子、抗凋亡分子、促炎或稳态细胞因子和趋化因子受体。使用编码已知表位特异性 TCR 的基因进行转导,可以同时使用疫苗,以增强过继转移的 T 细胞的抗肿瘤反应。最重要的是,抗肿瘤 T 细胞的基因修饰使免疫疗法能够治疗几乎任何癌症组织学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Restifo其他文献

Nicholas Restifo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Restifo', 18)}}的其他基金

Developing new immunotherapies based of CD4 T cells
开发基于 CD4 T 细胞的新免疫疗法
  • 批准号:
    8349294
  • 财政年份:
  • 资助金额:
    $ 178.23万
  • 项目类别:
Developing new immunotherapies based of CD4+ T cells
开发基于 CD4 T 细胞的新免疫疗法
  • 批准号:
    8763317
  • 财政年份:
  • 资助金额:
    $ 178.23万
  • 项目类别:
Developing new immunotherapies based of CD4+ T cells
开发基于 CD4 T 细胞的新免疫疗法
  • 批准号:
    8937933
  • 财政年份:
  • 资助金额:
    $ 178.23万
  • 项目类别:
Building on the success of the adoptive immunotherapy of cancer
以癌症过继免疫疗法的成功为基础
  • 批准号:
    9343691
  • 财政年份:
  • 资助金额:
    $ 178.23万
  • 项目类别:
Developing new immunotherapies based of CD4 T cells
开发基于 CD4 T 细胞的新免疫疗法
  • 批准号:
    7965981
  • 财政年份:
  • 资助金额:
    $ 178.23万
  • 项目类别:
Developing new immunotherapies based of CD4+ T cells
开发基于 CD4 T 细胞的新免疫疗法
  • 批准号:
    8552948
  • 财政年份:
  • 资助金额:
    $ 178.23万
  • 项目类别:
Developing new immunotherapies based of CD4 T cells
开发基于 CD4 T 细胞的新免疫疗法
  • 批准号:
    7733436
  • 财政年份:
  • 资助金额:
    $ 178.23万
  • 项目类别:
Building on the success of the adoptive immunotherapy of cancer
以癌症过继免疫疗法的成功为基础
  • 批准号:
    9556354
  • 财政年份:
  • 资助金额:
    $ 178.23万
  • 项目类别:
Building on the success of the adoptive immunotherapy of cancer
以癌症过继免疫疗法的成功为基础
  • 批准号:
    8349144
  • 财政年份:
  • 资助金额:
    $ 178.23万
  • 项目类别:
Building on the success of the adoptive immunotherapy of cancer
以癌症过继免疫疗法的成功为基础
  • 批准号:
    8763203
  • 财政年份:
  • 资助金额:
    $ 178.23万
  • 项目类别:

相似国自然基金

CMV特异性T细胞回输促进受者内源性抗CMV免疫重建的机制研究
  • 批准号:
    81900137
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
STAT/IRF-8通路在髓源性抑制细胞(MDSCs)诱导肝移植免疫耐受过程中的机制研究
  • 批准号:
    81401320
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
肾固有树突状细胞在肾脏缺血再灌注损伤中的作用及其机制
  • 批准号:
    81170690
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
HBV特异性免疫效应细胞预防肝移植术后乙肝复发的研究
  • 批准号:
    81170444
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
抗原特异性髓系抑制细胞过继转移抗小鼠高危角膜移植排斥反应研究
  • 批准号:
    81070709
  • 批准年份:
    2010
  • 资助金额:
    37.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mechanisms of Durable Antitumor Immunity Mediated by PI3K-targeted T cells
PI3K 靶向 T 细胞介导的持久抗肿瘤免疫机制
  • 批准号:
    10682190
  • 财政年份:
    2023
  • 资助金额:
    $ 178.23万
  • 项目类别:
Next generation T cell therapies for mutant KRAS solid tumors
针对突变 KRAS 实体瘤的下一代 T 细胞疗法
  • 批准号:
    10731929
  • 财政年份:
    2023
  • 资助金额:
    $ 178.23万
  • 项目类别:
Macrophage-Mediated Delivery of Acoustically Propelled Nanoparticles for Sensitizing Immunologically Cold Tumors
巨噬细胞介导的声学推进纳米颗粒的递送用于敏化免疫冷肿瘤
  • 批准号:
    10512775
  • 财政年份:
    2022
  • 资助金额:
    $ 178.23万
  • 项目类别:
Macrophage-Mediated Delivery of Acoustically Propelled Nanoparticles for Sensitizing Immunologically Cold Tumors
巨噬细胞介导的声学推进纳米颗粒的递送用于敏化免疫冷肿瘤
  • 批准号:
    10646371
  • 财政年份:
    2022
  • 资助金额:
    $ 178.23万
  • 项目类别:
Immune injury as a driver for the development of ascending aortic aneurysms and dissections
免疫损伤是升主动脉瘤和夹层发展的驱动因素
  • 批准号:
    10204109
  • 财政年份:
    2020
  • 资助金额:
    $ 178.23万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了