Integrating computation and genetics to quantify specificity in protein networks

整合计算和遗传学来量化蛋白质网络的特异性

基本信息

  • 批准号:
    8478145
  • 负责人:
  • 金额:
    $ 40.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Large-scale biological datasets (e.g. genetic and protein-protein interactions) are becoming easier to systematically produce in a variety of organisms, but it can be difficult to extract testable hypotheses on how individual proteins function. The overall objective of this research is to develop an experimental and computational platform that helps to address this gap between high-throughput information at the genomic scale and detailed mechanistic analysis of biological processes at the protein, protein domain and amino acid residue scale. To achieve this, the proposal integrates the complementary expertise of two investigators at the University of California-San Francisco in structural biophysics and computational protein modeling and design (Tanja Kortemme) and in large-scale, quantitative genetic and protein-protein interaction mapping strategies (Nevan Krogan). This work will specifically focus on specificity and promiscuity of protein recognition domains that mediate a considerable fraction of interactions in all biological processes. The central hypothesis this project will test is that there exist biologically important differences between the functional and biochemical overlap of members of a domain family. To test for such differences, we will simultaneously characterize the functional processes all members of a major domain family are involved in, and how these functions relate to the intrinsic protein recognition preferences of the family members. As a proof of principle, we aim to interrogate the family of 23 SH3 domain containing proteins in the model organism S. cerevisiae. SH3 domains have considerable biological importance: they are involved in a several critical processes in signal transduction, reorganization of the actin cytoskeleton, stress response and endocytosis. More practically, SH3 domains were selected as a manageable model system due to the amount of structural and biochemical data accumulated for this domain family. Aim 1 uses an unbiased large-scale genetic interaction mapping strategy to genetically interrogate SH3 domain deletions in all SH3-containing proteins in budding yeast so that their in vivo relevance can be studied. Aim 2 proposes to use this information, along with previously published physical interaction data, to aid in structure-based predictions of the recognition specificity of individual SH3 domains. Computational strategies using RosettaDesign will be used to reengineer domains to tune interaction specificity and promiscuity. These predictions will be tested in Aim 3 using biochemical, functional and genetic approaches and the resulting data will be used to refine the models generated in Aim 2. In the future, we intend to extend our findings and the experimental platform this project seeks to establish into other species, initially into fission yeast, but ultimately to higher organisms. We expect our developed framework to be broadly informative for applications in molecular reengineering as well as for development of therapeutics acting on interconnected protein networks.
描述(由申请人提供):大规模的生物数据集(例如遗传和蛋白质 - 蛋白质相互作用)变得更容易在各种生物体中系统地产生,但是很难就单个蛋白质的运作方式提取可检测的假设。这项研究的总体目的是开发一个实验和计算平台,该平台有助于解决基因组量表的高通量信息之间的差距,以及对蛋白质,蛋白质结构域和氨基酸残基量表的生物过程的详细机械分析。为了实现这一目标,该提案在结构生物物理学和计算蛋白质建模与设计(Tanja Kortemme)以及大规模的,定量的遗传和蛋白质 - 蛋白质相互作用绘图策略(内凡·克罗根)。这项工作将专门关注蛋白质识别域的特异性和滥交,这些蛋白质识别域介导了所有生物过程中相互作用的大部分相互作用。该项目将检验的中心假设是,域家族成员的功能和生化重叠之间存在生物学上重要的差异。为了测试这种差异,我们将同时表征主要领域家族的所有成员的功能过程,以及这些功能如何与家族成员的内在蛋白质识别偏好相关。作为原则的证明,我们旨在询问模型有机体中含有蛋白质的23个SH3域的家族。 SH3结构域具有相当大的生物学重要性:它们参与了信号转导,肌动蛋白细胞骨架,应激反应和内吞作用的几个关键过程。更重要的是,由于该域家族积累的结构和生化数据的量,SH3域被选择为可管理的模型系统。 AIM 1使用无偏的大规模遗传相互作用映射策略来在萌芽的酵母中在所有含SH3的蛋白质中遗传质疑SH3域的缺失,以便可以研究它们的体内相关性。 AIM 2建议使用此信息以及先前发布的物理交互数据,以帮助基于结构的单个SH3域的识别特异性的预测。使用Rosettadesign的计算策略将用于重新设计域以调整相互作用的特异性和滥交。这些预测将在AIM 3中使用生化,功能和遗传方法进行测试,并且将使用的数据将用于完善AIM 2中生成的模型。将来,我们打算扩展我们的发现和该项目试图建立的实验平台进入其他物种,最初进入裂变酵母,但最终变成更高的生物体。我们预计,我们开发的框架将在分子重新设计以及对互连蛋白质网络上作用的治疗剂的开发中广泛提供信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tanja Kortemme其他文献

Tanja Kortemme的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tanja Kortemme', 18)}}的其他基金

Molecular Biophysics Training Grant
分子生物物理学培训补助金
  • 批准号:
    10628259
  • 财政年份:
    2023
  • 资助金额:
    $ 40.22万
  • 项目类别:
Computational design of proteins and protein functions
蛋白质和蛋白质功能的计算设计
  • 批准号:
    10406129
  • 财政年份:
    2022
  • 资助金额:
    $ 40.22万
  • 项目类别:
Computational design of proteins and protein functions
蛋白质和蛋白质功能的计算设计
  • 批准号:
    10654738
  • 财政年份:
    2022
  • 资助金额:
    $ 40.22万
  • 项目类别:
Discovery of Protein Network Function
蛋白质网络功能的发现
  • 批准号:
    9199586
  • 财政年份:
    2016
  • 资助金额:
    $ 40.22万
  • 项目类别:
Discovery of Protein Network Function
蛋白质网络功能的发现
  • 批准号:
    9007917
  • 财政年份:
    2016
  • 资助金额:
    $ 40.22万
  • 项目类别:
Computational design of new protein structures and interactions
新蛋白质结构和相互作用的计算设计
  • 批准号:
    10396457
  • 财政年份:
    2015
  • 资助金额:
    $ 40.22万
  • 项目类别:
Computational design of protein-based small-molecule biosensors
基于蛋白质的小分子生物传感器的计算设计
  • 批准号:
    9274033
  • 财政年份:
    2015
  • 资助金额:
    $ 40.22万
  • 项目类别:
Computational design of protein-based small-molecule biosensors
基于蛋白质的小分子生物传感器的计算设计
  • 批准号:
    9261549
  • 财政年份:
    2015
  • 资助金额:
    $ 40.22万
  • 项目类别:
Integrating computation and genetics to quantify specificity in protein networks
整合计算和遗传学来量化蛋白质网络的特异性
  • 批准号:
    8299557
  • 财政年份:
    2011
  • 资助金额:
    $ 40.22万
  • 项目类别:
Integrating computation and genetics to quantify specificity in protein networks
整合计算和遗传学来量化蛋白质网络的特异性
  • 批准号:
    8665442
  • 财政年份:
    2011
  • 资助金额:
    $ 40.22万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Molecular mechanisms of photoreceptor disc morphogenesis
光感受器盘形态发生的分子机制
  • 批准号:
    10749286
  • 财政年份:
    2023
  • 资助金额:
    $ 40.22万
  • 项目类别:
A Nanocarrier Platform for Targeting Schlemm's Canal Cells
用于靶向施累姆氏管细胞的纳米载体平台
  • 批准号:
    10705690
  • 财政年份:
    2022
  • 资助金额:
    $ 40.22万
  • 项目类别:
A Nanocarrier Platform for Targeting Schlemm's Canal Cells
用于靶向施累姆氏管细胞的纳米载体平台
  • 批准号:
    10539739
  • 财政年份:
    2022
  • 资助金额:
    $ 40.22万
  • 项目类别:
Novel insights on immune thrombocytopenia purpura with platelet contraction cytometry
血小板收缩细胞术对免疫性血小板减少性紫癜的新见解
  • 批准号:
    10677532
  • 财政年份:
    2021
  • 资助金额:
    $ 40.22万
  • 项目类别:
Novel insights on immune thrombocytopenia purpura with platelet contraction cytometry
血小板收缩细胞术对免疫性血小板减少性紫癜的新见解
  • 批准号:
    10686169
  • 财政年份:
    2021
  • 资助金额:
    $ 40.22万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了