Genetic Manipulation of Unreaplasma spp. Infecting Humans using Synthetic Genomic

Unreaplasma spp 的遗传操作。

基本信息

  • 批准号:
    8228356
  • 负责人:
  • 金额:
    $ 21.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-02-01 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Ureaplasma urealyticum and Ureaplasma parvum are sexually transmitted human pathogens. Infection is widespread. As many as 40-80% of women are carriers. While most infections are asymptomatic, they cause invasive diseases in some patients. Although they have been associated with a wide range of diseases, their largest impact on society is as a cause of adverse pregnancy outcomes and infection of newborns, leading to higher risk of newborn mortality. Virtually all very-low-birth-weight newborns (less than 2.5 kg or 5.5 lbs) have respiratory ureaplasma infections. Ureaplasma infections resistant to antibiotics are increasingly common and the best drugs for ureaplasma treatment, fluoroquinolones and tetracyclines, are not recommended for pregnant women or children. Efforts to understand ureaplasma biology and pathogenesis have been inhibited by the lack of means to modify the DNA of these bacteria. The capacity to modify organisms' genomes has been a prerequisite in understanding host-pathogen interaction and factors involved in pathogenicity in many well studied pathogens. Development of genetic tools for the creation of designed mutant ureaplasmas will give scientists the power to identify factors making ureaplasmas pathogenic and how to better prevent disease due to ureaplasma infection. Recently our J. Craig Venter Institute research team created a bacterial cell with a chemically synthesized genome. To reach this synthetic cell milestone we developed foundation tools for the new science of Synthetic Genomics. One of those tools called "genome transplantation" enabled us to take a genome out of one species of bacteria called Mycoplasma mycoides, and install it into another species of bacteria. With another tool, we cloned the same M. mycoides genome inside a yeast cell, where it sits quietly parked. Once inside that yeast cell we can use well developed genetic tools used by yeast biologists to modify that genome by deleting or adding genes. These two methods in concert allowed us to make an altered M. mycoides strain. This new M. mycoides could not have been made using any existing technology. The goal of this project is to apply this Synthetic Genomics technology to develop genetic tools for creation of modified ureaplasma strains that will aid in the understanding of ureaplasma pathogenicity. Our specific aims are first to adapt our genome transplantation method for installation of a U. urealyticum genome into a U. parvum or U. diversum recipient cell. The second aim, which is of little use until aim one is achieved, is to clone that same ureaplasma genome in a yeast cell. The result of the two aims is the capacity to modify ureaplasma gene content and expression so that we can test hypotheses about ureaplasma pathogenesis and develop new therapies. Beyond the immediate advances for these poorly understood pathogens, there could be other even more important consequences. Currently we only know how to transplant the genome of one bacterial species. Learning how to transplant ureaplasma genomes could lead to our being able to do this for many other species including bacteria with unrealized pharmaceutical or industrial potential, for which we have no genetic tools. PUBLIC HEALTH RELEVANCE: Ureaplasmas are sexually transmitted pathogens that are important causes of adverse pregnancy outcomes and increased risk of low birthweight infant morbidity. Research into causes of ureaplasma pathogenesis and possible therapies has been hindered by the absence of genetic tools that would enable hypothesis driven studies. Methods invented for the new field of Synthetic Genomics to create a "synthetic bacterial cell" will be adapted for modification of ureaplasma genomes.
描述(由申请人提供):解脲支原体和微小解脲支原体是通过性传播的人类病原体。感染范围广泛。多达 40-80% 的女性是携带者。虽然大多数感染是无症状的,但它们会在一些患者中引起侵袭性疾病。尽管它们与多种疾病有关,但它们对社会的最大影响是导致不良妊娠结局和新生儿感染,导致新生儿死亡风险更高。几乎所有极低出生体重新生儿(体重低于 2.5 公斤或 5.5 磅)都患有呼吸道解脲支原体感染。对抗生素耐药的解脲支原体感染越来越常见,治疗解脲支原体的最佳药物氟喹诺酮类药物和四环素类药物不建议孕妇或儿童使用。由于缺乏修饰这些细菌 DNA 的方法,了解解脲支原体生物学和发病机制的努力受到了阻碍。修改生物体基因组的能力是了解宿主-病原体相互作用以及许多经过充分研究的病原体的致病性相关因素的先决条件。开发用于创建设计的突变解脲支原体的遗传工具将使科学家有能力识别导致解脲支原体致病的因素以及如何更好地预防解脲支原体感染引起的疾病。最近,我们的 J. Craig Venter 研究所研究团队创建了一种具有化学合成基因组的细菌细胞。为了实现这一合成细胞里程碑,我们开发了合成基因组学新科学的基础工具。其中一种称为“基因组移植”的工具使我们能够从一种称为丝状支原体的细菌中取出基因组,并将其安装到另一种细菌中。使用另一种工具,我们在酵母细胞内克隆了相同的蕈状支原体基因组,它静静地停在那里。一旦进入酵母细胞,我们就可以使用酵母生物学家使用的成熟遗传工具,通过删除或添加基因来修改基因组。这两种方法的结合使我们能够制造出一种改变的蕈状支原体菌株。这种新的蕈状支原体不可能使用任何现有技术来制造。该项目的目标是应用这种合成基因组学技术来开发遗传工具,用于创建改良的解脲支原体菌株,这将有助于了解解脲支原体致病性。我们的具体目标首先是调整我们的基因组移植方法,将解脲脲原体基因组安装到小球脲或异形脲原体受体细胞中。第二个目标是在酵母细胞中克隆相同的解脲支原体基因组,在实现第一个目标之前几乎没有什么用处。这两个目标的结果是能够修改解脲支原体基因内容和表达,以便我们能够测试有关解脲支原体发病机制的假设并开发新疗法。除了对这些知之甚少的病原体的直接进展之外,可能还会产生其他更重要的后果。目前我们只知道如何移植一种细菌物种的基因组。了解如何移植解脲支原体基因组可能使我们能够为许多其他物种做到这一点,包括具有未实现的制药或工业潜力的细菌,而我们没有遗传工具。 公共卫生相关性:解脲支原体是性传播病原体,是不良妊娠结局和增加低出生体重婴儿发病风险的重要原因。由于缺乏能够进行假设驱动研究的遗传工具,对解脲支原体发病机制和可能疗法的研究受到阻碍。为合成基因组学新领域发明的创建“合成细菌细胞”的方法将适用于解脲支原体基因组的修饰。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Irvin Glass其他文献

John Irvin Glass的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Irvin Glass', 18)}}的其他基金

A Digital Microfluidic Systems for Gene Synthesis, Sequencing and Recovery
用于基因合成、测序和恢复的数字微流控系统
  • 批准号:
    8721980
  • 财政年份:
    2012
  • 资助金额:
    $ 21.33万
  • 项目类别:
Genetic Manipulation of Unreaplasma spp. Infecting Humans using Synthetic Genomic
Unreaplasma spp 的遗传操作。
  • 批准号:
    8415840
  • 财政年份:
    2012
  • 资助金额:
    $ 21.33万
  • 项目类别:

相似国自然基金

肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
  • 批准号:
    82074395
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
  • 批准号:
    81800898
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
  • 批准号:
    31860716
  • 批准年份:
    2018
  • 资助金额:
    39.0 万元
  • 项目类别:
    地区科学基金项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
  • 批准号:
    81803854
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
  • 批准号:
    10465010
  • 财政年份:
    2023
  • 资助金额:
    $ 21.33万
  • 项目类别:
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
  • 批准号:
    10557547
  • 财政年份:
    2023
  • 资助金额:
    $ 21.33万
  • 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
  • 批准号:
    10595404
  • 财政年份:
    2023
  • 资助金额:
    $ 21.33万
  • 项目类别:
Regulation of Vascular Calcification by Adventitial Endothelial Cells
外膜内皮细胞对血管钙化的调节
  • 批准号:
    10642619
  • 财政年份:
    2023
  • 资助金额:
    $ 21.33万
  • 项目类别:
The Role of Dopamine in Cognitive Resilience to Alzheimer's Disease Pathology in Healthy Older Adults
多巴胺在健康老年人阿尔茨海默氏病病理认知弹性中的作用
  • 批准号:
    10678125
  • 财政年份:
    2023
  • 资助金额:
    $ 21.33万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了