A suite of diagnostic aids based on image retrieval

一套基于图像检索的诊断辅助工具

基本信息

  • 批准号:
    8300707
  • 负责人:
  • 金额:
    $ 32.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary The predominant approach to computer-aided diagnosis (CAD) in medical imaging has been to use automated image analysis to serve as a "second reader," with the aim of improving radiologists' diagnostic performance. CAD techniques traditionally aim to highlight suspicious lesions (called CADe) and/or estimate diagnostic variables, such as probability of malignancy (called CADx). We have been developing and evaluating a different approach to CAD, in which the radiologist will be assisted by a content-based search engine that will automatically identify and display examples of lesions, with known pathology, that are similar to the lesion being evaluated (referred to as the query). This will involve searching a large database for the images that are most similar to the query, based on image features that are automatically extracted by the software. The philosophy of this approach is to help inform the radiologist's diagnosis in difficult cases by presenting relevant information from past cases. The retrieved example lesions will allow the radiologist to explicitly compare known cases to the unknown case. A key advantage of the proposed retrieval approach to CAD is that it leaves decision-making entirely in the hands of the radiologist, unlike CADx, which acts as a supplemental decision maker. In our approach, we aim to tackle the key challenge of image retrieval, which is to develop a meaningful computerized measure of the similarity (relevance) of a patient's images to other images in the database. Departing from typical approaches based on numerical distance measures, we have proposed that the most useful measure of similarity is one that is designed specifically to match that perceived by the radiologist. We postulate that the radiologist's notion of similarity is some complicated unknown function of the images, and use advanced machine-learning algorithms to learn this function from similarity scores collected from radiologists in reader studies. Under R21 funding, we successfully demonstrated the feasibility and good performance of our approach in small data sets. The purpose of this proposed R01 project is to follow up the R21 project with a significantly larger scale effort in order to bring this approach to fruition, which will lead to a suite of retrieval-based CAD tools. We will develop the following unique components toward a clinical diagnostic aid: 1) instead of using indexing terms or simple distance measures to identify relevant images in the database, the system will use a similarity measure specifically trained to match radiologists' notion of relevance, as inferred from data obtained in an observer study; 2) in addition to presenting the retrieved cases to the radiologist, the system will use them to boost a CADx classifier to improve its classification accuracy on the query lesion; 3) the system will have the new capability of automatically building a large reference library by extracting known cases from a hospital PACS, thereby maximizing the benefit by retrieving more-similar cases; and 4) the system will be augmented with a highly interactive interface, which will include new tools for automatically adapting the similarity measure according to users' preferences, and for effectively presenting retrieved results. All of these components are novel and important to ultimate success of this kind of diagnostic aid. The project will include a preliminary demonstration using the Hospital Information System at the University of Chicago Hospitals, and will include preliminary evaluation studies to determine the effect of the system on radiologists' diagnostic performance.
项目摘要 医学成像中计算机辅助诊断(CAD)的主要方法是使用自动化 图像分析是“第二读者”,目的是改善放射科医生的诊断性能。 传统上,CAD技术旨在突出可疑病变(称为CADE)和/或估算诊断 变量,例如恶性肿瘤的概率(称为CADX)。 我们一直在开发和评估一种不同的CAD方法,放射科医生将是 在基于内容的搜索引擎的协助下,该引擎将自动识别和显示病变的示例 已知的病理,类似于正在评估的病变(称为查询)。这将涉及 基于图像功能 由软件自动提取。这种方法的理念是帮助放射科医生的 在困难案例中诊断,通过提供过去病例中的相关信息。检索的示例病变 将允许放射科医生明确将已知病例与未知病例进行比较。一个关键优势 拟议的检索方法是,它将决策完全留在了放射科医生的手中, 与CADX不同,CADX充当补充决策者。 在我们的方法中,我们旨在应对图像检索的关键挑战,即发展有意义 患者图像与数据库中其他图像的相似性(相关性)的计算机测量。 我们脱离了基于数值距离措施的典型方法,我们提出了最多的方法 相似性的有用度量是专门针对放射科医生所感知的。我们 假设放射科医生的相似性概念是图像的某些复杂的未知功能,并且 使用先进的机器学习算法从收集的相似性分数中学习此功能 读者研究的放射学家。 根据R21的资金,我们成功地证明了我们方法的可行性和良好表现 小数据集。该建议的R01项目的目的是跟进R21项目 更大的努力以使这种方法实现,这将导致一套基于检索的CAD 工具。我们将开发以下独特的组件,用于临床诊断帮助:1)而不是使用 索引术语或简单的距离度量以识别数据库中相关图像,系统将使用 从获得的数据中推断出的相似性措施,专门训练以匹配放射科医生的相关性概念 在观察者研究中; 2)除了将检索到的病例介绍给放射科医生外,系统还将使用 它们可以提高CADX分类器,以提高其在查询病变上的分类精度; 3)系统将 具有新的能力,可以通过从一个中提取已知案例自动构建大型参考库 医院PACS,从而通过检索更相似的病例来最大程度地提高利益; 4)系统将是 增强具有高度交互式界面,该界面将包括用于自动调整的新工具 根据用户的喜好进行相似性度量,并有效地提出检索结果。所有这些 组件是新颖的,对于这种诊断援助的最终成功而言很重要。 该项目将包括使用大学医院信息系统的初步演示 芝加哥医院,并将包括初步评估研究,以确定系统对 放射科医生的诊断性能。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Retrieval boosted computer-aided diagnosis of clustered microcalcifications for breast cancer.
检索促进了乳腺癌聚集性微钙化的计算机辅助诊断。
  • DOI:
    10.1118/1.3675600
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Jing,Hao;Yang,Yongyi;Nishikawa,RobertM
  • 通讯作者:
    Nishikawa,RobertM
Regularization in retrieval-driven classification of clustered microcalcifications for breast cancer.
Analysis of perceived similarity between pairs of microcalcification clusters in mammograms.
分析乳房 X 光检查中微钙化簇对之间的感知相似性。
  • DOI:
    10.1118/1.4870959
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Wang,Juan;Jing,Hao;Wernick,MilesN;Nishikawa,RobertM;Yang,Yongyi
  • 通讯作者:
    Yang,Yongyi
Estimating the Accuracy Level Among Individual Detections in Clustered Microcalcifications.
  • DOI:
    10.1109/tmi.2017.2654799
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Sainz de Cea MV;Nishikawa RM;Yang Y
  • 通讯作者:
    Yang Y
Detection of clustered microcalcifications using spatial point process modeling.
  • DOI:
    10.1088/0031-9155/56/1/001
  • 发表时间:
    2011-01-07
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Jing H;Yang Y;Nishikawa RM
  • 通讯作者:
    Nishikawa RM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongyi Yang其他文献

Yongyi Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongyi Yang', 18)}}的其他基金

A suite of diagnostic aids based on image retrieval
一套基于图像检索的诊断辅助工具
  • 批准号:
    8119450
  • 财政年份:
    2009
  • 资助金额:
    $ 32.03万
  • 项目类别:
A suite of diagnostic aids based on image retrieval
一套基于图像检索的诊断辅助工具
  • 批准号:
    7899840
  • 财政年份:
    2009
  • 资助金额:
    $ 32.03万
  • 项目类别:
A suite of diagnostic aids based on image retrieval
一套基于图像检索的诊断辅助工具
  • 批准号:
    7730016
  • 财政年份:
    2009
  • 资助金额:
    $ 32.03万
  • 项目类别:

相似海外基金

Breast CT: Final Steps to Translation
乳房 CT:翻译的最后步骤
  • 批准号:
    8830613
  • 财政年份:
    2015
  • 资助金额:
    $ 32.03万
  • 项目类别:
A suite of diagnostic aids based on image retrieval
一套基于图像检索的诊断辅助工具
  • 批准号:
    8119450
  • 财政年份:
    2009
  • 资助金额:
    $ 32.03万
  • 项目类别:
A suite of diagnostic aids based on image retrieval
一套基于图像检索的诊断辅助工具
  • 批准号:
    7899840
  • 财政年份:
    2009
  • 资助金额:
    $ 32.03万
  • 项目类别:
A suite of diagnostic aids based on image retrieval
一套基于图像检索的诊断辅助工具
  • 批准号:
    7730016
  • 财政年份:
    2009
  • 资助金额:
    $ 32.03万
  • 项目类别:
Intra-operative radiographic margin assessment tool for breast-conserving surgery
保乳手术的术中放射线切缘评估工具
  • 批准号:
    7479492
  • 财政年份:
    2008
  • 资助金额:
    $ 32.03万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了