Ceramic scaffolds with engineered topography and chemistry
具有工程形貌和化学特性的陶瓷支架
基本信息
- 批准号:8281742
- 负责人:
- 金额:$ 30.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-02-01 至 2015-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcidsAddressAgingApatitesArchitectureBone RegenerationBone ResorptionBone TissueBone TransplantationBone remodelingCadaverCalvariaCeramicsCharacteristicsChemicalsChemistryComplexCompressive StrengthCrystallizationDefectDevelopmentEngineeringEnsureExhibitsGlassGoalsGoldHarvestHistopathologyIn VitroIon ExchangeKineticsLeadMacorMeasuresMechanicsModelingMorbidity - disease rateNanotopographyNiobiumOperative Surgical ProceduresOsteogenesisOxidesPatientsPhasePolymersPoriferaPorosityProcessPropertyRattusReplica TechniquesResearchRiskScheduleSiteSolubilityStrontiumStructureSurfaceTestingX-Ray Computed Tomographybasebonechemical propertydensitydesigndisease transmissionfluorapatitein vivolead oxidenanosizednovelpublic health relevancescaffold
项目摘要
DESCRIPTION (provided by applicant): The research proposed in this application is directed at developing novel ceramic scaffolds that are bioresorbable, bioactive, osteoconductive and exhibit high strength. These goals will be achieved through stepwise engineering of the ceramic microstructure, scaffold architecture, micro and nanotopography and surface chemistry. The rationale is that there is currently no synthetic scaffold material that is bioactive, resorbable and exhibits biologically compatible compressive strength. We will first investigate the crystallization kinetics and mechanical properties of sintered niobium- doped fluorapatite (FAp) ceramics with the aim of developing a highly crystalline ceramic with nanosized FAp crystals (Aim 1). We will select the best composition with niobium additions that will induce phase separation, lead to the crystallization of nanosized crystals and high crystallinity. We will then prepare FAp ceramic scaffolds using a carefully engineered approach that combines a pre-coating step, a glazing step and a chemical etching step (Aim 2). We postulate that optimization of the scaffold architecture will lead to superior mechanical properties and that the chemical etching step will promote a complex three-dimensional surface micro and nanotopography later stimulating contact osteogenesis. The effect of ion-exchange on surface chemistry, solubility and bioactivity of the scaffolds will be tested in Aim 3. The overall rationale is that strontium substitution in the apatite structure will increase solubility and bioactivity. Finally, the resorption and bone regeneration ability of the scaffolds will be tested in vivo using a rat calvarial critical defect model and a combination of state of the art in vivo micro-computed tomography and histopathology (Aim 4). The hypotheses tested are that the surface chemistry and topography of the scaffolds will enhance bone regeneration and that the resorption rate will be compatible with the rate of bone regeneration.
PUBLIC HEALTH RELEVANCE: There is currently no ideal bone graft substitute. Autogenous bone is still considered the gold standard despite its associated morbidity. There is currently no synthetic material that is bioactive, available as a 3D-scaffold with mechanical integrity, exhibits nanotopography and is resorbable at a controlled rate. We plan to develop a synthetic ceramic scaffold that will (i) eliminate the need for a second surgical site to harvest autogenous bone, (ii) address patients concerns about the use of cadaver bone tissue and risk of disease transmission, (iii) offer superior mechanical properties compared to currently available synthetic scaffold materials (iv) promote osteoconduction and contact osteogenesis through engineered surface topography, (v) exhibit a controlled resorption rate compatible with bone regeneration rates via engineered surface chemistry, and (vi) assist in the management of congenital and acquired bony defects.
描述(由申请人提供):本申请中提出的研究旨在开发可生物可吸收,生物活性,破骨传导性和表现高强度的新型陶瓷支架。这些目标将通过对陶瓷微结构,脚手架结构,微型和纳米形态以及表面化学的逐步工程来实现。理由是目前尚无生物活性,可吸收并具有生物学兼容的抗压强度的合成支架材料。我们将首先研究烧结的Niobium掺杂的氟磷灰石(FAP)陶瓷的结晶动力学和机械性能,目的是开发带有纳米化FAP晶体的高度结晶陶瓷(AIM 1)。我们将选择最佳的组成,并添加氮化物,从而诱导相分离,导致纳米化晶体的结晶和高结晶度。然后,我们将使用精心设计的方法来准备FAP陶瓷支架,该方法结合了预涂层步骤,玻璃的步骤和化学蚀刻步骤(AIM 2)。我们假设脚手架结构的优化将导致优质的机械性能,并且化学蚀刻步骤将促进复杂的三维表面微型和纳米造影,然后刺激接触式成骨。离子交换对脚手架表面化学,溶解度和生物活性的影响将在AIM 3中进行测试。总体理由是,磷灰石结构中的锶取代将提高溶解度和生物活性。最后,脚手架的吸收和骨再生能力将在体内使用大鼠刻痕临界缺陷模型和体内微型计算机层析成像和组织病理学中的最新状态进行体内测试(AIM 4)。测试的假设是脚手架的表面化学和地形将增强骨骼再生,并且吸收率将与骨再生速率兼容。
公共卫生相关性:目前没有理想的骨移植替代品。尽管具有相关的发病率,但自体骨仍然被认为是黄金标准。目前尚无生物活性的合成材料,可作为具有机械完整性的3D型物件可用,具有纳米造影术,并且可以以受控的速率将其复原。我们计划开发一种合成的陶瓷支架,该支架将(i)消除第二个手术部位收获自动骨骼的需求,(ii)解决患者对使用尸体骨骼组织的使用和疾病传播风险的担忧,(iii)可提供优质与当前可用的合成支架材料(IV)相比,机械性能通过工程表面形象促进了骨质传导和接触式成骨,(V)表现出与工程表面化学相兼容的受控吸收率,并通过工程表面化学兼容(VI)并获得了骨缺陷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isabelle L Denry其他文献
Isabelle L Denry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isabelle L Denry', 18)}}的其他基金
Novel honeycomb gallo-silicate microspheres for rapid hemostasis of oral and maxillofacial wounds
新型蜂窝状硅酸微球用于口腔颌面部伤口快速止血
- 批准号:
10378211 - 财政年份:2021
- 资助金额:
$ 30.78万 - 项目类别:
Novel honeycomb gallo-silicate microspheres for rapid hemostasis of oral and maxillofacial wounds
新型蜂窝状硅酸微球用于口腔颌面部伤口快速止血
- 批准号:
9914640 - 财政年份:2020
- 资助金额:
$ 30.78万 - 项目类别:
Smart Release Antimicrobial Coatings for Dental Implants
用于牙种植体的智能释放抗菌涂层
- 批准号:
9178449 - 财政年份:2016
- 资助金额:
$ 30.78万 - 项目类别:
Synergistic Phase Combination for High Strength Ultrafine-Grained Bioceramics
高强度超细晶生物陶瓷的协同相组合
- 批准号:
9104437 - 财政年份:2016
- 资助金额:
$ 30.78万 - 项目类别:
Ceramic scaffolds with engineered topography and chemistry
具有工程形貌和化学特性的陶瓷支架
- 批准号:
8019583 - 财政年份:2010
- 资助金额:
$ 30.78万 - 项目类别:
Ceramic scaffolds with engineered topography and chemistry
具有工程形貌和化学特性的陶瓷支架
- 批准号:
8402543 - 财政年份:2010
- 资助金额:
$ 30.78万 - 项目类别:
Ceramic scaffolds with engineered topography and chemistry
具有工程形貌和化学特性的陶瓷支架
- 批准号:
8590115 - 财政年份:2010
- 资助金额:
$ 30.78万 - 项目类别:
Ceramic scaffolds with engineered topography and chemistry
具有工程形貌和化学特性的陶瓷支架
- 批准号:
8204587 - 财政年份:2010
- 资助金额:
$ 30.78万 - 项目类别:
High Toughness Textured Ceramics for Biomedical Use
生物医学用高韧性织构陶瓷
- 批准号:
7056190 - 财政年份:2000
- 资助金额:
$ 30.78万 - 项目类别:
相似国自然基金
琥珀酸代谢重编逆转碳青霉烯耐药铜绿假单胞菌耐药性的研究
- 批准号:32370191
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
植物特有蛋白FENT响应脱落酸信号调控囊泡运输的分子机制研究
- 批准号:32370329
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
钽铌酸钾晶体多效应耦合及光场调控极化序构的电光性能增益机制研究
- 批准号:62305089
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
- 批准号:82370423
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于胆汁酸介导的TGR5/GLP-1环路探究解毒通络调肝方调控肠肝轴改善T2DM-IR作用机制
- 批准号:82374380
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Pharmacokinetics-Based DNA-Encoded Library Screening
基于药代动力学的 DNA 编码文库筛选
- 批准号:
10644211 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别: