Axial Flow Effects in Proximal Tubule
近端小管的轴流效应
基本信息
- 批准号:7900388
- 负责人:
- 金额:$ 38.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-05-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAngiotensin IIAnimal ModelApicalBicarbonatesBlood PressureBrush BorderCalciumCalcium SignalingCalmodulinCellsChelating AgentsCiliaCollaborationsCyclic AMPCyclic AMP-Dependent Protein KinasesCytoskeletal ModelingCytoskeletonDataDopamineEquilibriumF-ActinFimbrinImmunofluorescence ImmunologicIn VitroIonsKidneyKnockout MiceLengthLiquid substanceMDCK cellMaintenanceMeasuresMechanicsMediatingMembrane Transport ProteinsMicrotubulesModelingMusMyosin ATPaseNa(+)-K(+)-Exchanging ATPaseNephronsNeuronsPKA inhibitorPerfusionPermeabilityPhysiologicalPlayProton-Translocating ATPasesRegulationRelative (related person)RoleSecond Messenger SystemsSignal TransductionSodiumSodium ChlorideStructureSulpirideTight JunctionsTorqueWaterWestern BlottingWorkabsorptionautocrinecellular microvillusdata modelinghormone regulationinhibitor/antagonistkidney cellknockout animalluminal membranemathematical modelpublic health relevanceresearch studyresponsesecond messengersensorshear stresstheoriestraffickingvillin
项目摘要
DESCRIPTION (provided by applicant): The physiological importance of flow-activated salt and water transport in proximal tubules has been recognized for more than four decades, however the mechanism of this regulation is still not well defined. Recently we have demonstrated that a) Perfusion-absorption balance is present in the isolated perfused proximal tubule of the mouse. b) Both luminal membrane NHE3 and H-ATPase are regulated by flow; c) Changes in tight junction permeabilities do not play a role in flow-modulated transport. We have developed a theory for calculating the forces and torques on the microvilli, and demonstrated that flow-induced changes of proximal tubule absorption are torque dependent, and that an intact actin cytoskeleton is required to transduce the signal to the cell. Experimental data and modeling calculations provide strong evidence that brush border microvilli function as flow sensors in the proximal tubule. However, whether the primary cilium also functions as flow sensor and whether peritubular ion transporters can also be regulated by axial flow has not been examined. In the work proposed, in vitro microperfusion experiments, immunofluorescence, and Western blotting will be conducted with the following three aims: 1) To study the controversy of whether central cilia or microvilli are the flow sensors in proximal tubules by comparing model predictions with flow-induced changes on Na+ and HCO3- absorption in wild-type, and villin, fimbrin, myosins and cilia-deficient mice; 2) To study the role of flow-induced actin cytoskeletal reorganization in modulating transporter trafficking and function in mouse proximal tubules; 3) To examine the role of second messengers, calcium signals, cAMP- and PKA- modulated mechanisms and the role of dopamine in flow-dependent proximal tubule transport. The unique features of our proposed collaboration are: 1) the comparison of flow-dependent proximal tubule transport in intact tubules in mice and in knockout animals; 2) the representation of reabsorptive fluxes as a function of the hydrodynamic forces and torques on microvilli and cilia; and 3) the assessment of flow-induced actin cytoskeletal reorganization, ion transporter localization, and functional changes within a mathematical model of proximal tubule transport. These studies will provide new information on mechanisms of glomerulotubular balance (GTB) and aspects of renal fluid and HCO3- transport in physiological and pathophysiological conditions. PUBLIC HEALTH RELEVANCE: The maintenance of systemic blood pressure depends upon the rate of sodium reabsorption within the kidney, along the entire nephron, and about 2/3 of this occurs in the proximal tubule. The proposed studies will provide direct information on the regulation of proximal tubule sodium transport. Possible benefits include identification of target molecules, which may be blocked or modified in order to modulate sodium reabsorption by the kidney.
描述(由申请人提供):近端小管中流动激活的盐和水运输的生理重要性已被认识了四十多年,但是这种调节的机制仍然没有明确定义。最近我们证明了 a) 小鼠离体灌注近端小管中存在灌注-吸收平衡。 b) 管腔膜NHE3和H-ATPase均受流量调节; c) 紧密连接渗透性的变化在流量调节运输中不起作用。我们开发了一种计算微绒毛上的力和扭矩的理论,并证明近端小管吸收的流动引起的变化是扭矩依赖性的,并且需要完整的肌动蛋白细胞骨架将信号转导到细胞。实验数据和建模计算提供了强有力的证据,证明刷状缘微绒毛在近端小管中充当流量传感器。然而,初级纤毛是否也起到流量传感器的作用以及管周离子转运蛋白是否也可以通过轴流调节尚未得到研究。在拟议的工作中,将进行体外微灌注实验、免疫荧光和蛋白质印迹,以达到以下三个目的:1)通过将模型预测与流量比较,研究中央纤毛或微绒毛是否是近端小管中的流量传感器的争议。诱导野生型和绒毛、纤维蛋白、肌球蛋白和纤毛缺陷小鼠的 Na+ 和 HCO3- 吸收变化; 2) 研究流诱导的肌动蛋白细胞骨架重组在调节小鼠近曲小管转运蛋白运输和功能中的作用; 3) 检查第二信使、钙信号、cAMP 和 PKA 调节机制的作用以及多巴胺在流量依赖性近端小管转运中的作用。我们提出的合作的独特之处在于:1)比较小鼠和基因敲除动物的完整肾小管中的流量依赖性近端小管运输; 2)重吸收通量作为微绒毛和纤毛上的水动力和扭矩的函数的表示; 3)评估流动诱导的肌动蛋白细胞骨架重组、离子转运蛋白定位以及近端小管转运数学模型内的功能变化。这些研究将提供有关肾小球小管平衡 (GTB) 机制以及生理和病理生理条件下肾液和 HCO3- 转运方面的新信息。公众健康相关性:全身血压的维持取决于肾脏内整个肾单位的钠重吸收率,其中约 2/3 发生在近端肾小管中。拟议的研究将提供有关近端小管钠转运调节的直接信息。可能的好处包括识别目标分子,可以阻断或修饰这些分子以调节肾脏对钠的重吸收。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tong Wang Wang其他文献
Tong Wang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tong Wang Wang', 18)}}的其他基金
Defective flow-dependent tubule transport in the pathogenesis of kidney disease
肾脏疾病发病机制中的血流依赖性肾小管运输缺陷
- 批准号:
10063866 - 财政年份:2019
- 资助金额:
$ 38.99万 - 项目类别:
Defective flow-dependent tubule transport in the pathogenesis of kidney disease
肾脏疾病发病机制中的血流依赖性肾小管运输缺陷
- 批准号:
10310442 - 财政年份:2019
- 资助金额:
$ 38.99万 - 项目类别:
相似国自然基金
PKCε-Rab11介导KCNQ1通道膜蛋白下调促进血管紧张素II诱导的心肌肥厚致心律失常的机制研究
- 批准号:82204397
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管紧张素II活化的钙振荡在TBI后PSH相关的神经功能损害中的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管紧张素II2型受体在血管损伤中抑制周围脂肪组织功能失调的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LncRNA XIST通过micRNA-144-3p靶向Nrf2调控血管紧张素II引起心肌损伤的机制
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
血管紧张素II调控ATF3诱导铁死亡促进心梗后心室重构的机制研究
- 批准号:82000249
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
YAP1, neointima formation, and blood pressure regulation
YAP1、新内膜形成和血压调节
- 批准号:
10731404 - 财政年份:2022
- 资助金额:
$ 38.99万 - 项目类别:
YAP1, neointima formation, and blood pressure regulation
YAP1、新内膜形成和血压调节
- 批准号:
10229472 - 财政年份:2020
- 资助金额:
$ 38.99万 - 项目类别:
YAP1, neointima formation, and blood pressure regulation
YAP1、新内膜形成和血压调节
- 批准号:
10040710 - 财政年份:2020
- 资助金额:
$ 38.99万 - 项目类别:
Interventions Against the Molecular Etiology of BMPR2-induced PAH
针对 BMPR2 诱导的 PAH 分子病因学的干预措施
- 批准号:
10352413 - 财政年份:2019
- 资助金额:
$ 38.99万 - 项目类别:
Impaired Endothelial Maturation and the Developmental Origin of Vascular Disease
内皮成熟受损和血管疾病的发育起源
- 批准号:
8759467 - 财政年份:2014
- 资助金额:
$ 38.99万 - 项目类别: