Anthrax Toxin Lethal Factor Inhibition Study

炭疽毒素致死因子抑制研究

基本信息

  • 批准号:
    8298666
  • 负责人:
  • 金额:
    $ 46.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-06 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The anthrax toxin lethal factor (LF) enzyme directly enables the Bacillus anthracis bacterium to evade host immunological mechanisms, leading to circulatory shock and death. Few, if any, therapeutic options are available to counteract LF-mediated cytotoxicity at any stage of anthrax infection. The long-term goal is to better understand the mechanisms by which anthrax toxins act, and, based upon that knowledge, to develop novel and relevant biochemical tools that can be utilized to define mechanisms of LF-related cell death and tissue damage. The objective in this particular application is to evaluate new, promising molecular scaffolds for efficacy against LF-mediated toxicity. The central hypothesis is that small molecules structurally related to a new glutamic acid-based scaffold will effectively inhibit LF protease activity in vitro and in cell-based assays. The rationale for the proposed research is that an improved understanding of key structural features that contribute to LF inhibition will, in turn, lead to an improved understanding of toxin involvement in anthrax pathogenesis, and will potentially provide a promising strategy for treating postexposure anthrax. Thus, the proposed research is relevant to that part of NIH's mission that pertains to developing fundamental knowledge that can be applied to advance significantly the Nation's capacity to protect and improve health. Guided by strong preliminary data, the central hypothesis will be tested by pursuing four specific aims: 1) Design, synthesize and evaluate new glutamic acid-based libraries targeting the anthrax toxin lethal factor active site; 2) Identify new scaffolds for LF probe design using high-throughput screening; 3) Identify probe compounds with capacity to protect macrophages against LF-mediated cytotoxicity; and 4) Identify key binding modes to the LF enzyme active site by means of X-ray crystallography. Under the first aim, libraries around candidate scaffolds will be generated in silico; compounds will be prioritized using molecular modeling; and selected compounds will be synthesized and evaluated for activity against LF in vitro. In the second aim, a large-scale high-throughput screen with novel triage and hit-to-probe techniques will be conducted to identify additional potential scaffolds for probe design; refinement from hit scaffolds will follow an iterative, systematic cycle of design, synthesis, purification, and screening. In the third aim, probes will be tested to assess their relative protective efficacy in inhibiting cell death of a murine macrophage cell line in response to anthrax toxin; and in the fourth aim, prioritized compounds will be co-crystallized with LF in order to experimentally identify key LF ligand-receptor interactions. The approach is innovative, because it targets specific LF structural features that have not been fully investigated, and incorporates recently developed, highly accurate computational and experimental techniques not yet applied to the LF system. The proposed research is significant, because it is expected to provide further molecular insights into the pathways leading to LF-related cell death, and in so doing, to advance and expand understanding of the complex mechanisms involved in anthrax toxemia. PUBLIC HEALTH RELEVANCE: The proposed work addresses important and under-investigated molecular structures and mechanisms that contribute to anthrax pathogenesis. The proposed research has relevance to public health, because although weaponized anthrax continues to pose a threat to society, there is currently no effective therapeutic on the market that can counteract LF-mediated cell death, and the findings from this work are ultimately expected to guide the design of effective therapeutics that can aid persons who have been, or suspect they may have been, exposed to anthrax spores in an emergency situation.
描述(由申请人提供):炭疽毒素致死因子(LF)酶直接使炭疽芽孢杆菌细菌能够逃避宿主的免疫机制,从而导致循环冲击和死亡。在炭疽感染的任何阶段,很少有(如果有的话)可以抵消LF介导的细胞毒性。长期目标是更好地了解炭疽毒素作用的机制,并基于这些知识,开发可用于定义与LF相关细胞死亡和组织损伤机制的新​​颖和相关的生化工具。该特定应用的目的是评估新的,有希望的分子支架,以抗LF介导的毒性的功效。中心假设是,与新的基于谷氨酸的支架结构相关的小分子将有效地在体外和基于细胞的测定中抑制LF蛋白酶活性。拟议的研究的基本原理是,对有助于LF抑制的关键结构特征有了深入的了解,反过来,将提高人们对毒素涉及炭疽病发病机理的了解,并有可能为治疗暴露后遭受的炭疽病提供有前途的策略。因此,拟议的研究与NIH任务的那部分有关,该研究与开发基本知识有关,这些知识可用于显着提高国家保护和改善健康的能力。在强大的初步数据的指导下,将通过追求四个特定目的来检验中心假设:1)设计,合成和评估针对炭疽毒素致命因子活性位点的新的基于谷氨酸的新文库; 2)使用高通量筛选确定LF探针设计的新脚手架; 3)鉴定具有保护巨噬细胞免受LF介导的细胞毒性的能力的探针化合物; 4)通过X射线晶体学识别与LF酶活性位点的关键结合模式。在第一个目标下,将在Silico生成候选脚手架的图书馆。使用分子建模将优先考虑化合物;并将在体外对LF的活性进行合成和评估所选化合物。在第二个目标中,将进行具有新型分流和撞车技术的大规模高通量屏幕,以确定探针设计的其他潜在脚手架。 HIT支架的细化将遵循设计,合成,纯化和筛选的迭代,系统的循环。在第三个目的中,将测试探针,以评估其在抑制鼠巨噬细胞细胞系的细胞死亡中对炭疽毒素的抑制细胞死亡的相对保护效果;在第四个目标中,优先级化合物将与LF共结晶,以实验识别关键的LF配体 - 受体相互作用。该方法具有创新性,因为它针对尚未完全研究的特定LF结构特征,并结合了最近开发的,高度准确的计算和实验技术,尚未应用于LF系统。拟议的研究很重要,因为预计它将对导致LF相关细胞死亡的途径进行进一步的分子见解,并以此为促进和扩展对炭疽毒素涉及的复杂机制的理解。公共卫生相关性:拟议的工作解决了有助于炭疽发病机理的重要和不足的分子结构和机制。拟议的研究与公共卫生有关,因为尽管武器化的炭疽持续对社会构成威胁,但目前在市场上没有有效的治疗方法可以抵消LF介导的细胞死亡,最终期望这项工作的发现有效地指导有效的治疗剂,可以帮助他们有帮助的人,或者怀疑他们可能会在Anthrax Spores中受到侵害。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identification of novel anthrax toxin countermeasures using in silico methods.
使用计算机方法鉴定新型炭疽毒素对策。
Highly predictive support vector machine (SVM) models for anthrax toxin lethal factor (LF) inhibitors.
Statistical analysis, optimization, and prioritization of virtual screening parameters for zinc enzymes including the anthrax toxin lethal factor.
包括炭疽毒素致死因子在内的锌酶虚拟筛选参数的统计分析、优化和优先级排序。
  • DOI:
    10.2174/1568026614666141106163011
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Maize,KimberlyM;Zhang,Xia;Amin,ElizabethAmbrose
  • 通讯作者:
    Amin,ElizabethAmbrose
Identification of novel non-hydroxamate anthrax toxin lethal factor inhibitors by topomeric searching, docking and scoring, and in vitro screening.
  • DOI:
    10.1021/ci900186w
  • 发表时间:
    2009-12
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Chiu TL;Solberg J;Patil S;Geders TW;Zhang X;Rangarajan S;Francis R;Finzel BC;Walters MA;Hook DJ;Amin EA
  • 通讯作者:
    Amin EA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Ann Ambrose其他文献

Elizabeth Ann Ambrose的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth Ann Ambrose', 18)}}的其他基金

Anthrax Toxin Lethal Factor Inhibition Study
炭疽毒素致死因子抑制研究
  • 批准号:
    7693937
  • 财政年份:
    2009
  • 资助金额:
    $ 46.56万
  • 项目类别:
Anthrax Toxin Lethal Factor Inhibition Study
炭疽毒素致死因子抑制研究
  • 批准号:
    8091381
  • 财政年份:
    2009
  • 资助金额:
    $ 46.56万
  • 项目类别:
Anthrax Toxin Lethal Factor Inhibition Study
炭疽毒素致死因子抑制研究
  • 批准号:
    7884568
  • 财政年份:
    2009
  • 资助金额:
    $ 46.56万
  • 项目类别:

相似海外基金

Actions of spiropyrimidinetriones against bacterial type II topoisomerases
螺嘧啶三酮对细菌 II 型拓扑异构酶的作用
  • 批准号:
    10750473
  • 财政年份:
    2023
  • 资助金额:
    $ 46.56万
  • 项目类别:
Development of Selective Oxidative Biocatalytic Methods
选择性氧化生物催化方法的发展
  • 批准号:
    10606798
  • 财政年份:
    2023
  • 资助金额:
    $ 46.56万
  • 项目类别:
Novel Therapeutics for Heart Failure: Modified, Water-Soluble Caveolin-1 Scaffolding Domain Peptides with Improved Characteristics for Drug Development
心力衰竭的新型疗法:修饰的水溶性 Caveolin-1 支架结构域肽,具有改进的药物开发特性
  • 批准号:
    10599654
  • 财政年份:
    2023
  • 资助金额:
    $ 46.56万
  • 项目类别:
Enzymology of Bacteroides short and branched chain fatty acid metabolism
拟杆菌短链和支链脂肪酸代谢的酶学
  • 批准号:
    10651505
  • 财政年份:
    2023
  • 资助金额:
    $ 46.56万
  • 项目类别:
Designing chemoenzymatic approaches to biologically active molecules enabled by enzyme library screening
通过酶库筛选设计生物活性分子的化学酶方法
  • 批准号:
    10723582
  • 财政年份:
    2023
  • 资助金额:
    $ 46.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了