Innovative Biofabrication of 3D Nano-Biocomposites for Repair of Osteochondral De

用于修复骨软骨病的 3D 纳米生物复合材料的创新生物制造

基本信息

  • 批准号:
    8299911
  • 负责人:
  • 金额:
    $ 14.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2013-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The research presented in this proposal aims to solve one of the major limitations in implant repair of osteochondral defects, namely the control of architecture and morphology of replacement biomaterials. Osteochondral defects have an extremely limited potential for self-repair. Whether the defect is traumatic or degenerative, osteoarthritis frequently results from these defects necessitating surgical repair. Surgical treatment of large osteochondral defects is often accomplished by transferring a non-weight bearing section of bone and cartilage to the defect. This is a costly and invasive procedure without a reliable outcome for patients. An attractive alternative is to replace the defect with a single material that restores lost bone and simultaneously replaces the lost cartilage with material to cushion the compressive, tensile, and shearing forces of joint loading. The innovation in this proposal is novel biofabrication process for creating 3D Nano- cellulose hydroxyapatite biocomposite (Nano-biocomposite) which functions as a load bearing articular cartilage and its underlying bone for repair of large osteochondral defects. Our manufacturing process is capable of producing this unique biomaterial with gradient of properties at large scale, at low cost and with great environmental efficiency. Bacterial cellulose, BC is an emerging nano-biomaterial consisting of cellulose nanofibril networks produced by bacteria Acetobacter xylinum. It is a hydrogel-like biomaterial with unique biocompatibility, mechanical integrity, hydroexpansivity, and stability under a wide range of conditions. The similarity of size of cellulose nanofibrils with collagen makes cellulose an ideal scaffolding material for regenerative medicine. We propose to develop a biofabrication process of gradient 3D Nano- biocomposites for repair of osteochondral defects. We have made innovations with which we can manufacture bacterial cellulose nano-biomaterial with spatially controlled architecture and surface properties. PUBLIC HEALTH RELEVANCE: Reconstruction of orthopedic defects that arise from trauma, disease, age, or congenital defects is a necessary procedure to protect vital organs, restore motor function, and improve patient self-confidence. In the US an estimated 800,000 grafting procedures were performed in 2003 making bone the second most transplanted tissue after blood. Osteochondral defects are among large unmet medical needs. The research presented in this proposal aims to solve one of the major limitations in implant repair of osteochondral defects, namely the control of architecture and morphology of replacement biomaterials.
描述(由申请人提供):本提案中提出的研究旨在解决骨软骨缺损植入修复的主要限制之一,即替代生物材料的结构和形态的控制。骨软骨缺损的自我修复潜力极其有限。无论缺陷是创伤性的还是退行性的,骨关节炎常常是由这些缺陷引起的,需要进行手术修复。大骨软骨缺损的手术治疗通常是通过将骨和软骨的非承重部分转移到缺损处来完成的。这是一种昂贵的侵入性手术,无法为患者带来可靠的结果。一种有吸引力的替代方案是用单一材料替代缺损,该材料可以恢复丢失的骨质,同时用材料替代丢失的软骨,以缓冲关节负荷的压缩力、拉伸力和剪切力。该提案的创新之处在于采用新颖的生物制造工艺来创建 3D 纳米纤维素羟基磷灰石生物复合材料(纳米生物复合材料),该复合材料可作为承载关节软骨及其底层骨,用于修复大型骨软骨缺损。我们的制造工艺能够大规模生产这种具有梯度特性的独特生物材料,成本低廉且环境效率极高。细菌纤维素,BC是一种新兴的纳米生物材料,由木醋杆菌产生的纤维素纳米纤维网络组成。它是一种类水凝胶生物材料,具有独特的生物相容性、机械完整性、水膨胀性和在多种条件下的稳定性。大小相似度 纤维素纳米原纤维与胶原蛋白的结合使纤维素成为再生医学的理想支架材料。我们建议开发梯度 3D 纳米生物复合材料的生物制造工艺,用于修复骨软骨缺损。我们进行了创新,可以制造具有空间控制结构和表面特性的细菌纤维素纳米生物材料。 公共卫生相关性:因创伤、疾病、年龄或先天缺陷而引起的骨科缺陷的重建是保护重要器官、恢复运动功能和提高患者自信心的必要程序。在美国,2003 年估计进行了 800,000 例移植手术,使骨骼成为仅次于血液的第二大移植组织。骨软骨缺陷是大量未满足的医疗需求之一。该提案中提出的研究旨在解决骨软骨缺损植入修复的主要限制之一,即替代生物材料的结构和形态的控制。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The feasibility of using irreversible electroporation to introduce pores in bacterial cellulose scaffolds for tissue engineering.
  • DOI:
    10.1007/s00253-015-6445-0
  • 发表时间:
    2015-06
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Baah-Dwomoh, Adwoa;Rolong, Andrea;Gatenholm, Paul;Davalos, Rafael V.
  • 通讯作者:
    Davalos, Rafael V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laurie O'Rourke其他文献

Laurie O'Rourke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

我国东部土壤源氮氧化物排放机理与空气质量影响模拟评估
  • 批准号:
    42371080
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
织物基空气击穿直流摩擦纳米发电机的高电输出特性研究
  • 批准号:
    52303055
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非键合Ir-Ni双金属有机框架材料的可控制备及锂-空气电池性能研究
  • 批准号:
    22309099
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于近红外AIE表面活性剂的空气微生物污染监测与消杀一体化技术研究
  • 批准号:
    22302107
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向空气污染的室温高性能SnO2基H2S气体传感器研究
  • 批准号:
    62364002
  • 批准年份:
    2023
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Role of neonatal lung macrophages in mediating resilience to hyperoxia induced lung injury via TREM2 signaling
新生儿肺巨噬细胞通过 TREM2 信号传导介导高氧诱导肺损伤的恢复能力
  • 批准号:
    10720557
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
Elucidating the Cellular Origins of lung adenocarcinoma
阐明肺腺癌的细胞起源
  • 批准号:
    10743611
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
Organizing and Reorganizing Human Testis Development In Vitro
体外组织和重组人类睾丸发育
  • 批准号:
    10817412
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
  • 批准号:
    10438246
  • 财政年份:
    2022
  • 资助金额:
    $ 14.96万
  • 项目类别:
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
  • 批准号:
    10599340
  • 财政年份:
    2022
  • 资助金额:
    $ 14.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了