Innovative Biofabrication of 3D Nano-Biocomposites for Repair of Osteochondral De

用于修复骨软骨病的 3D 纳米生物复合材料的创新生物制造

基本信息

  • 批准号:
    8299911
  • 负责人:
  • 金额:
    $ 14.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2013-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The research presented in this proposal aims to solve one of the major limitations in implant repair of osteochondral defects, namely the control of architecture and morphology of replacement biomaterials. Osteochondral defects have an extremely limited potential for self-repair. Whether the defect is traumatic or degenerative, osteoarthritis frequently results from these defects necessitating surgical repair. Surgical treatment of large osteochondral defects is often accomplished by transferring a non-weight bearing section of bone and cartilage to the defect. This is a costly and invasive procedure without a reliable outcome for patients. An attractive alternative is to replace the defect with a single material that restores lost bone and simultaneously replaces the lost cartilage with material to cushion the compressive, tensile, and shearing forces of joint loading. The innovation in this proposal is novel biofabrication process for creating 3D Nano- cellulose hydroxyapatite biocomposite (Nano-biocomposite) which functions as a load bearing articular cartilage and its underlying bone for repair of large osteochondral defects. Our manufacturing process is capable of producing this unique biomaterial with gradient of properties at large scale, at low cost and with great environmental efficiency. Bacterial cellulose, BC is an emerging nano-biomaterial consisting of cellulose nanofibril networks produced by bacteria Acetobacter xylinum. It is a hydrogel-like biomaterial with unique biocompatibility, mechanical integrity, hydroexpansivity, and stability under a wide range of conditions. The similarity of size of cellulose nanofibrils with collagen makes cellulose an ideal scaffolding material for regenerative medicine. We propose to develop a biofabrication process of gradient 3D Nano- biocomposites for repair of osteochondral defects. We have made innovations with which we can manufacture bacterial cellulose nano-biomaterial with spatially controlled architecture and surface properties. PUBLIC HEALTH RELEVANCE: Reconstruction of orthopedic defects that arise from trauma, disease, age, or congenital defects is a necessary procedure to protect vital organs, restore motor function, and improve patient self-confidence. In the US an estimated 800,000 grafting procedures were performed in 2003 making bone the second most transplanted tissue after blood. Osteochondral defects are among large unmet medical needs. The research presented in this proposal aims to solve one of the major limitations in implant repair of osteochondral defects, namely the control of architecture and morphology of replacement biomaterials.
描述(由申请人提供):本提案中提出的研究旨在解决植入骨软骨缺陷的主要局限性之一,即对建筑的控制和替代生物材料的形态的控制。骨软骨缺陷的自我修复潜力极为有限。无论缺陷是创伤性的还是退化性的,骨关节炎都经常是由于需要进行手术修复的这些缺陷而导致的。大骨软骨缺损的手术治疗通常是通过将骨骼和软骨的非重量轴承段转移到缺陷中来完成的。这是一种昂贵且侵入性的程序,没有患者的可靠结果。一个有吸引力的替代方法是用单个材料代替缺陷,该材料恢复损失的骨骼,并同时用材料代替损失的软骨,以缓冲关节载荷的压缩,拉伸和剪切力。该提案中的创新是新的生物制造过程,用于创建3D纳米 - 纤维素羟基磷灰石生物复合材料(纳米生物复合材料),该过程可作为负载的关节软骨及其基础骨骼的负载,用于修复大骨软骨缺陷。我们的制造工艺能够以低成本和良好的环境效率以大规模的大规模梯度生产这种独特的生物材料。 BC细菌纤维素是一种新兴的纳米生物材料,由细菌乙酰杆菌木质细菌产生的纤维素纳米纤维网络组成。它是一种像水凝胶一样的生物材料,具有独特的生物相容性,机械完整性,水力传播和稳定性在广泛的条件下。大小的相似性 用胶原蛋白的纤维素纳米纤维的含量使纤维素成为再生医学的理想脚手架材料。我们建议开发梯度3D纳米生物复合材料的生物制造过程,以修复骨软骨缺损。我们进行了创新,可以通过空间控制的结构和表面特性来生产细菌纤维素纳米生物材料。 公共卫生相关性:由创伤,疾病,年龄或先天性缺陷引起的骨科缺陷的重建是保护重要器官,恢复运动功能并改善患者自信心的必要程序。在美国,估计进行了800,000个嫁接程序,使骨骼成为仅次于血液的第二大移植组织。骨软骨缺陷是巨大的未满足的医疗需求。该提案中提出的研究旨在解决植入骨软骨缺陷的植入物修复的主要局限性之一,即对建筑的控制和替代生物材料的形态。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The feasibility of using irreversible electroporation to introduce pores in bacterial cellulose scaffolds for tissue engineering.
  • DOI:
    10.1007/s00253-015-6445-0
  • 发表时间:
    2015-06
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Baah-Dwomoh, Adwoa;Rolong, Andrea;Gatenholm, Paul;Davalos, Rafael V.
  • 通讯作者:
    Davalos, Rafael V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laurie O'Rourke其他文献

Laurie O'Rourke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

双位点金属氧化物催化剂原子级界面调控及锌-空气电池性能研究
  • 批准号:
    22305010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
锂空气电池解耦电化学反应与固体产物存储的电极设计及关键传质问题研究
  • 批准号:
    52376080
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
固体氧化物燃料电池中Fe-Cr合金互连体与YSZ电解质的反应空气钎焊连接机理与接头组织调控研
  • 批准号:
    52371024
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
常压空气暖等离子体耦合催化剂固氮研究
  • 批准号:
    52377155
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
聚合物纤维膜的声至内源摩擦自充电效应及对空气过滤性能的影响
  • 批准号:
    52373103
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Role of neonatal lung macrophages in mediating resilience to hyperoxia induced lung injury via TREM2 signaling
新生儿肺巨噬细胞通过 TREM2 信号传导介导高氧诱导肺损伤的恢复能力
  • 批准号:
    10720557
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
Elucidating the Cellular Origins of lung adenocarcinoma
阐明肺腺癌的细胞起源
  • 批准号:
    10743611
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
Organizing and Reorganizing Human Testis Development In Vitro
体外组织和重组人类睾丸发育
  • 批准号:
    10817412
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
  • 批准号:
    10438246
  • 财政年份:
    2022
  • 资助金额:
    $ 14.96万
  • 项目类别:
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
  • 批准号:
    10599340
  • 财政年份:
    2022
  • 资助金额:
    $ 14.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了