One Enzyme for Two Distinct Metabolisms
一种酶负责两种不同的代谢
基本信息
- 批准号:8324519
- 负责人:
- 金额:$ 28.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAddressAerobicAnimal ModelApoptoticAssimilationsBiochemicalBordetella bronchisepticaCancer Cell GrowthCarbonCatalysisCellsDNAEnzymesEukaryotic CellGeneticGoalsGrowthHealthHumanInvestigationKnowledgeLaboratoriesLife Cycle StagesLiver CirrhosisLower OrganismMetabolicMetabolic PathwayMetabolismMethionineMycobacterium tuberculosisOrganismOxygenasesParasitesPathologyPathway interactionsPhysiological ProcessesPlayPost-Translational Protein ProcessingProcessProductionProkaryotic CellsProtein BiosynthesisProteinsRNAReactionRegimenRegulationRelative (related person)Rhodospirillum rubrumRibulose-Bisphosphate CarboxylaseRoleRouteSchemeStructure-Activity RelationshipSulfurSulfur CompoundsSulfur Metabolism PathwaySystemTherapeutic AgentsTrypanosomaanalogbasecell growthenolaseexperienceinsightmicroorganismnoveloxidationpathogenprotein structure functionribulose
项目摘要
DESCRIPTION (provided by applicant): Sulfur-containing metabolites play significant roles in many important processes that define healthy cellular activity. To make sulfur precursor molecules available for subsequent metabolism, and for DNA and RNA metabolism and various protein posttranslational modifications, prokaryotic and eukaryotic cells have developed salvage or sparing pathways. When such pathways become compromised, there are many health-related effects that are noted. For example, disruption or reduced functioning of the methionine salvage pathway has consequences relative to cancer cell growth and liver cirrhosis. In addition, intermediates of this pathway have been shown to influence apoptotic processes, while analogs of these intermediates are promising therapeutic agents that selectively disrupt the life cycle of malarial and trypanosome parasites. Despite the importance of such pathways, the strategies by which microorganisms and higher organisms control their ability to salvage sulfur-containing metabolites is not well understood, nor is there good understanding of the variety of ways in which these metabolites may be produced. In this investigation, the overall goal is to better understand the mechanism and regulation of newly discovered and wide-spread novel sulfur salvage pathways. Based on recent studies, it is apparent that an important and surprising strategy taken by diverse organisms is to employ ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) or the RubisCO-like protein (RLP), or both RubisCO and RLP, as key reactions that anchor sulfur salvage pathways in the cell. Both enzymes catalyze absolutely essential reactions that are needed for the metabolism and salvage of sulfur-containing metabolites in the cell. Using a model organism (Rhodospirillum rubrum) that is amenable to genetic and biochemical manipulation, and employs both aerobic (RLP-anchored) and anaerobic (RubisCO-anchored) methionine/sulfur salvage pathways, we will seek to: (a) elucidate the involvement of novel reactions required for new pathways of sulfur salvage; (b) determine how the aerobic and anaerobic pathways are differentially controlled; and (c) establish how the active site region of RubisCO accommodates and enables catalysis of reactions crucial to both sulfur and carbon metabolism. The latter aim presents an unprecedented opportunity to provide new paradigms for integrating protein structure/function relationships to key and diverse physiological processes.
描述(由申请人提供):含硫代谢物在定义健康细胞活性的许多重要过程中起着重要作用。为了使硫前体分子可用于随后的代谢,以及用于DNA和RNA代谢以及各种蛋白质后翻译后修饰,原核和真核细胞已经开发出挽救或保留途径。当这种途径被妥协时,有许多与健康相关的影响。例如,相对于癌细胞生长和肝肝硬化,蛋氨酸挽救途径的破坏或减少具有后果。此外,该途径的中间体已被证明会影响凋亡过程,而这些中间体的类似物是有前途的治疗剂,可有望选择性地破坏疟疾和锥虫寄生虫的生命周期。尽管这种途径很重要,但微生物和更高生物体控制其拯救含硫硫代谢的能力的策略尚不清楚,也没有很好地了解这些代谢物可以产生这些代谢物的各种方式。在这项调查中,总体目标是更好地了解新发现和广泛的新型硫磺拯救途径的机制和调节。根据最近的研究,很明显,多种生物体采取的重要且令人惊讶的策略是采用核糖1,5-双磷酸羧化酶/氧合酶(Rubisco)或Rubisco类蛋白(RLP),或Rubisco和Rubisco和RLP,或作为锚定硫磺溶液途径的关键反应。这两种酶都催化了绝对必要的反应,这些反应是细胞中代谢和挽救含硫代谢物的代谢所需的必不可少的反应。使用可与遗传和生化操纵相提并论的模型有机体(杜鹃花rubrum),并采用有氧和厌氧(RLP锚定)和厌氧(Rubisco锚定的)甲硫氨酸/硫酸硫氨酸/硫磺溶剂的途径,我们将寻求:(a)为新的反应介绍了新的反应,以供新的途径参与。 (b)确定有氧和厌氧途径如何差异控制; (c)建立Rubisco的活性部位区域如何适应对硫和碳代谢至关重要的反应的催化。后一个目标为提供新的范式提供了将蛋白质结构/功能关系与关键和多样化生理过程相结合的新范式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
F ROBERT TABITA其他文献
F ROBERT TABITA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('F ROBERT TABITA', 18)}}的其他基金
MOLECULAR BASIS AND ENZYMOLOGY OF MICROBIAL BIOSYNTHESIS
微生物生物合成的分子基础和酶学
- 批准号:
3304871 - 财政年份:1992
- 资助金额:
$ 28.53万 - 项目类别:
MOLECULAR BASIS AND ENZYMOLOGY OF MICROBIAL BIOSYNTHESIS
微生物生物合成的分子基础和酶学
- 批准号:
2415149 - 财政年份:1992
- 资助金额:
$ 28.53万 - 项目类别:
MOLECULAR BASIS AND ENZYMOLOGY OF MICROBIAL BIOSYNTHESIS
微生物生物合成的分子基础和酶学
- 批准号:
6636021 - 财政年份:1992
- 资助金额:
$ 28.53万 - 项目类别:
MOLECULAR BASIS AND ENZYMOLOGY OF MICROBIAL BIOSYNTHESIS
微生物生物合成的分子基础和酶学
- 批准号:
6095919 - 财政年份:1992
- 资助金额:
$ 28.53万 - 项目类别:
MOLECULAR BASIS AND ENZYMOLOGY OF MICROBIAL BIOSYNTHESIS
微生物生物合成的分子基础和酶学
- 批准号:
3304870 - 财政年份:1992
- 资助金额:
$ 28.53万 - 项目类别:
MOLECULAR BASIS AND ENZYMOLOGY OF MICROBIAL BIOSYNTHESIS
微生物生物合成的分子基础和酶学
- 批准号:
2183145 - 财政年份:1992
- 资助金额:
$ 28.53万 - 项目类别:
MOLECULAR BASIS AND ENZYMOLOGY OF MICROBIAL BIOSYNTHESIS
微生物生物合成的分子基础和酶学
- 批准号:
6386037 - 财政年份:1992
- 资助金额:
$ 28.53万 - 项目类别:
MOLECULAR BASIS AND ENZYMOLOGY OF MICROBIAL BIOSYNTHESIS
微生物生物合成的分子基础和酶学
- 批准号:
2910081 - 财政年份:1992
- 资助金额:
$ 28.53万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Multinuclear Dioxygen-Utilizing Copper Enzymes: Diverse Roles for Aromatic Redox Active Amino Acids
多核双氧利用铜酶:芳香族氧化还原活性氨基酸的多种作用
- 批准号:
10714992 - 财政年份:2023
- 资助金额:
$ 28.53万 - 项目类别:
Mechanistic Investigation of Copper-Dependent Peptide Cyclases for Macrocycle Engineering
用于大环工程的铜依赖性肽环化酶的机理研究
- 批准号:
10464289 - 财政年份:2022
- 资助金额:
$ 28.53万 - 项目类别:
Contribution of Ligand Sets to Oxygen Activation in Iron-dependent Biocatalysts
配体组对铁依赖性生物催化剂中氧活化的贡献
- 批准号:
10659063 - 财政年份:2022
- 资助金额:
$ 28.53万 - 项目类别:
Mechanistic Investigation of Copper-Dependent Peptide Cyclases for Macrocycle Engineering
用于大环工程的铜依赖性肽环化酶的机理研究
- 批准号:
10684663 - 财政年份:2022
- 资助金额:
$ 28.53万 - 项目类别:
Multimetallic Catalysis in Biology and Synthesis
生物学和合成中的多金属催化
- 批准号:
10580465 - 财政年份:2021
- 资助金额:
$ 28.53万 - 项目类别: