Catalytic Asymmetric Oxidation: Easy Entry to Highly Functionalized Molecules

催化不对称氧化:轻松进入高功能化分子

基本信息

  • 批准号:
    8283752
  • 负责人:
  • 金额:
    $ 22.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-09-01 至 2015-04-30
  • 项目状态:
    已结题

项目摘要

Modern drugs are highly functionalized molecules, and often these molecules are chiral. In the pharmaceutical industry, single chiral drugs constitute over half the total drug market, and the key components in 9 of the top 10 drugs are chiral. The biomedical importance of chiral compounds has spurred intense research efforts by leading laboratories. The most promising solution for production of these molecules has relied on asymmetric catalytic processes, especially catalytic asymmetric oxidation, which can introduce multi-functional groups into the molecule. The long term goal of the project is to develop catalytic asymmetric oxidation processes, which can create highly functionalized drugs at a useful level of selectivity and scalability. The objective of developing these catalysts is to provide reliable and easy access to make molecules previously unattainable in a simple manner. In this renewal proposal, we outline plans for the development and use of new oxidation catalysts for enantioselective synthesis of multi-functional molecules. Unlike traditional transition metal-based catalysts, the catalysts being developed and studied in this program are organic molecules or contain non-harmful metals. These transition metal-free catalysts are not only of a fundamental interest, but also of industrial importance, since harmful transition metals are undesirable in pharmaceutical drugs. Many of the subprojects are supported by promising preliminary results, whereas others represent new directions in either catalyst or methodology development. Mechanistic, crystallographic, and computational studies will provide an understanding of the catalytic processes and steer the development of more effective catalysts. Catalytic selective oxidation can introduce oxygen, nitrogen, or a halogen to the substrate catalytically and selectively. Our specific major aim is asymmetric epoxidation. The investigations of this reaction are expected to lead to the development of broadly useful asymmetric oxidation catalysis methodologies that will impact many facets of chemical synthesis. Additionally, the effort will provide excellent training in synthetic methodology development to undergraduate, graduate, and postdoctoral students interested in a research career in the pharmaceutical industry or academia Modified Specific Aim Catalytic enantioselective oxidation is an extremely important process for the drug industry. This is clear because the most bioactive molecules have highly functionalized structures. Simple olefins and carbonyl compounds are the most attractive starting materials available to the synthetic chemist, easily accessible in large quantities and in many varieties. Nature achieves highly specific syntheses of complex substances through the uniquely selective oxidation by enzyme catalysts starting from these simple compounds. While there are currently many broadly useful methods for catalytic asymmetric reduction, there are far fewer of these catalytic asymmetric techniques for oxidation. It should be noted that selective oxidation catalysis represents more formidable challenges than does for selective reduction catalysis, not the least of which is the thermodynamic instability of ligands under oxidative conditions. Although recently there has been progress in this important area, it is not yet sufficient. We propose herein catalytic oxidation which can introduce oxygen and sulfur into substrates chemo-, regio-, and enantioselectively to provide simple entry to the synthesis of highly functionalize complex molecules that have heretofore been known. Thus, our contribution here is expected to provide a set of new and general chiral oxidation catalysts for pharmaceutical laboratories and drug industries. The specific aim of the next funding period is asymmetric epoxidation. The aim is divided into two parts: (1) vanadium, hafnium, and zirconium catalysts for epoxidation and their application to epoxidation- cyclization cascades; and (2) iron-based catalysts for asymmetric epoxidation and C-H oxidation and activation. These catalysts are significant in their representation as simple, benign ways to promote enantioselective epoxidation reactions. Overall, the proposed work will not only lead to an efficient synthetic route for selective oxidations, but, more importantly, will result in the development of methodology that should prove to be of general value to medicinal chemistry. The proposed project will include syntheses of several simple bioactive molecules to demonstrate how our catalysts work. The actual utility of the methods, of course, is much broader. It is also expected that what is learned will be equally applicable to the development of new oxidation catalysts of other systems. The proposed approaches are innovative because each of them is an unknown process which capitalizes on a totally new concept of catalyst design developed by our group using previous NIH support. They also take advantage of a number of ligand libraries which are available in no other laboratory. The proposed research is significant, because it is expected to provide a fine toolbox of catalysts, which will make possible the provision of previously unattainable complex molecules needed to develop entirely new pharmacologic strategies in the future.
现代药物是高度功能化的分子,并且这些分子通常是手性的。在 医药行业,单一手性药物占整个药物市场一半以上,关键是 排名前 10 的药物中有 9 种成分是手性的。手性化合物的生物医学重要性 刺激了领先实验室的深入研究工作。最有前途的生产解决方案 这些分子依赖于不对称催化过程,特别是催化不对称氧化, 它可以在分子中引入多功能基团。该项目的长期目标是 开发催化不对称氧化过程,可以在短时间内产生高功能化的药物 有用的选择性和可扩展性水平。开发这些催化剂的目的是提供可靠的 并且可以轻松地以简单的方式制造以前无法获得的分子。 在这份更新提案中,我们概述了新型氧化催化剂的开发和使用计划 多功能分子的对映选择性合成。与传统的过渡金属基不同 催化剂,本计划中正在开发和研究的催化剂是有机分子或含有 无害金属。这些不含过渡金属的催化剂不仅具有根本利益,而且 具有工业重要性,因为有害的过渡金属在药物中是不受欢迎的。 许多子项目都得到了有希望的初步结果的支持,而其他子项目则代表了新的成果 催化剂或方法开发的方向。机械学、晶体学和 计算研究将提供对催化过程的理解并指导发展 更有效的催化剂。催化选择性氧化可以引入氧气、氮气或卤素 催化和选择性地作用于底物。 我们的具体主要目标是不对称环氧化。对这一反应的研究预计将导致 开发广泛有用的不对称氧化催化方法,这将影响许多 化学合成的各个方面。此外,这项工作还将提供出色的合成培训 为对某一领域感兴趣的本科生、研究生和博士后学生开发方法论 制药行业或学术界的研究生涯 修改后的具体目标 催化对映选择性氧化对于制药工业来说是极其重要的过程。这很清楚 因为最具生物活性的分子具有高度功能化的结构。简单烯烃和羰基 化合物是合成化学家最有吸引力的起始材料,易于获取 数量大、品种多。大自然实现了复杂的高度特异性合成 从这些简单的物质开始,通过酶催化剂进行独特的选择性氧化 化合物。虽然目前有许多广泛有用的催化不对称还原方法, 这些催化不对称氧化技术要少得多。需要注意的是,选择性 氧化催化比选择性还原催化面临更艰巨的挑战,而不是 其中最重要的是配体在氧化条件下的热力学不稳定性。虽然最近 在这一重要领域已经取得了进展,但还不够。我们在此提出催化 氧化,可以化学、区域和对映选择性地将氧和硫引入底物中 为合成迄今为止已被高度功能化的复杂分子提供了简单的途径 已知。因此,我们在这里的贡献预计将提供一套新的和通用的手性氧化 制药实验室和制药工业的催化剂。 下一个资助期的具体目标是不对称环氧化。目标分为两部分: (1) 环氧化用钒、铪、锆催化剂及其在环氧化中的应用—— 环化级联; (2) 用于不对称环氧化和C-H氧化的铁基催化剂和 激活。这些催化剂的重要性在于它们作为简单、良性的方式来促进 对映选择性环氧化反应。总体而言,拟议的工作不仅会带来有效的 选择性氧化的合成路线,但更重要的是,将导致开发 应该证明对药物化学具有普遍价值的方法。 拟议的项目将包括几种简单生物活性分子的合成,以展示如何 我们的催化剂起作用了。当然,这些方法的实际用途要广泛得多。还预计 所学到的知识同样适用于其他系统的新型氧化催化剂的开发。 所提出的方法是创新的,因为它们都是一个未知的过程,它利用了 我们的团队利用之前 NIH 的支持开发了一种全新的催化剂设计概念。他们还 利用许多其他实验室无法提供的配体库。拟议的 研究意义重大,因为它有望提供一个良好的催化剂工具箱,这将使 可能提供以前无法获得的复杂分子来开发全新的 未来的药理学策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HISASHI None YAMAMOTO其他文献

HISASHI None YAMAMOTO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HISASHI None YAMAMOTO', 18)}}的其他基金

Catalytic Asymmetric Oxidation: Easy Entry to Highly Functionalized Molecules
催化不对称氧化:轻松进入高功能化分子
  • 批准号:
    8011916
  • 财政年份:
    2010
  • 资助金额:
    $ 22.78万
  • 项目类别:
Catalytic Asymmetric Oxidation: Easy Entry to Highly Functionalized Molecules
催化不对称氧化:轻松进入高功能化分子
  • 批准号:
    7314350
  • 财政年份:
    2003
  • 资助金额:
    $ 22.78万
  • 项目类别:
Catalytic Asymmetric Oxidation: Easy Entry to Highly Functionalized Molecules
催化不对称氧化:轻松进入高功能化分子
  • 批准号:
    8466983
  • 财政年份:
    2003
  • 资助金额:
    $ 22.78万
  • 项目类别:
Asymmetric Synthesis Using N-O Compounds.
使用 N-O 化合物的不对称合成。
  • 批准号:
    6945732
  • 财政年份:
    2003
  • 资助金额:
    $ 22.78万
  • 项目类别:
Asymmetric Synthesis Using N-O Compounds
使用 N-O 化合物的不对称合成
  • 批准号:
    6666571
  • 财政年份:
    2003
  • 资助金额:
    $ 22.78万
  • 项目类别:
Catalytic Asymmetric Oxidation: Easy Entry to Highly Functionalized Molecules
催化不对称氧化:轻松进入高功能化分子
  • 批准号:
    7666017
  • 财政年份:
    2003
  • 资助金额:
    $ 22.78万
  • 项目类别:
Asymmetric Synthesis Using N-O Compounds.
使用 N-O 化合物的不对称合成。
  • 批准号:
    7121536
  • 财政年份:
    2003
  • 资助金额:
    $ 22.78万
  • 项目类别:
Asymmetric Synthesis Using N-O Compounds.
使用 N-O 化合物的不对称合成。
  • 批准号:
    6795583
  • 财政年份:
    2003
  • 资助金额:
    $ 22.78万
  • 项目类别:
Catalytic Asymmetric Oxidation: Easy Entry to Highly Functionalized Molecules
催化不对称氧化:轻松进入高功能化分子
  • 批准号:
    7491593
  • 财政年份:
    2003
  • 资助金额:
    $ 22.78万
  • 项目类别:

相似海外基金

2023 Chromosome Dynamics Gordon Research Conference and Seminar
2023年染色体动力学戈登研究会议暨研讨会
  • 批准号:
    10750086
  • 财政年份:
    2023
  • 资助金额:
    $ 22.78万
  • 项目类别:
Structural Determinants of Permeation Barriers in Escherichia coli
大肠杆菌渗透屏障的结构决定因素
  • 批准号:
    10749251
  • 财政年份:
    2023
  • 资助金额:
    $ 22.78万
  • 项目类别:
Interdisciplinary Nutrition Sciences Symposium: Obesity and the Brain Across the Life Course
跨学科营养科学研讨会:整个生命过程中的肥胖与大脑
  • 批准号:
    10753871
  • 财政年份:
    2023
  • 资助金额:
    $ 22.78万
  • 项目类别:
Development of a novel, regenerative therapy to reverse synapse loss in Alzheimer's Disease
开发一种新颖的再生疗法来逆转阿尔茨海默氏病的突触损失
  • 批准号:
    10707700
  • 财政年份:
    2023
  • 资助金额:
    $ 22.78万
  • 项目类别:
Clinical Coordinating Center for the Network of Excellence in Neuroscience Clinical Trials (NEXT - CCC)
神经科学临床试验卓越网络临床协调中心 (NEXT - CCC)
  • 批准号:
    10741962
  • 财政年份:
    2023
  • 资助金额:
    $ 22.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了