Modular Assembly Approach to Engineer Prevascularized Large 3D Tissue Constructs
用于设计预血管化大型 3D 组织结构的模块化组装方法
基本信息
- 批准号:8321540
- 负责人:
- 金额:$ 21.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-19 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAllogenicAnastomosis - actionAnimalsAutologous TransplantationBlood VesselsBlood capillariesBody FluidsBone MarrowBuffersCell Culture TechniquesCell SurvivalCell TransplantsCellsChemical EngineeringConsensusEncapsulatedEndothelial CellsEngineeringFibrinGelHistocompatibility TestingHumanHydrogelsImageImplantIn SituIn VitroLiteratureMesenchymal Stem CellsMethodsMorphogenesisMorphologyMotionMyocardialMyocardiumNutrientOxygenPerfusionReactionReportingResearchResearch PersonnelRodentStructureSupporting CellSystemTechnologyTestingTissue EngineeringTissuesUmbilical veinWorkabstractingaqueousbasecapillarychemical reactionclinically relevantdesignexperiencehuman tissueimplantationin vivoinnovationinterestinterstitialpoly(ethylene glycol)diacrylateporous hydrogelrepairedscaffoldtissue culturetwo-dimensional
项目摘要
DESCRIPTION (provided by applicant):
Tissue engineering holds great promise in creating functional tissues that can replace diseased or lost tissues of human beings. Recently, consensus has been reached that three-dimensional (3D) tissue culture is superior to traditional two-dimensional (2D) cell culture in recapitulating the in vivo cell microenvironments and tissue structures. It has been found that many engineered tissues are functional only when they are developed in 3D systems. Despite the recognized importance of 3D tissue engineering and the tremendous efforts that have been made, the progress of developing large and viable 3D tissues of clinically relevant sizes has been limited. One major challenge in creating such tissue products is insufficient mass transfer in the interior region of large and a vascular constructs. Although mass transfer in large constructs prepared from preformed porous scaffolds can be enhanced in vitro through perfusion culture, insufficient mass transfer remains a problem after these constructs are implanted in vivo. On the other hand, some in situ forming hydrogels allow encapsulated endothelial cells to form capillary networks that undergo an anastomosis with the host vasculature after implantation, but hydrogel constructs without large pores cannot be perfusion-cultured so that their size is limited. Lack of methods to create large perfusable hydrogel constructs supporting in vitro endothelial capillary morphogenesis for prevascularization limits our ability to address the problem of insufficient mass transfer in 3D tissue engineering. The objective of this R21 application is to use a modular assembly approach to develop large, porous hydrogel constructs containing endothelial capillary networks and to examine postimplantation survival of the cells in these constructs. The central hypothesis of this work is that fibrin microgels having well-controlled morphology and laden with endothelial cells and other cells of interest can be modularly assembled into large, porous constructs in situ through a judiciously selected chemical reaction occurring under physiologically permissive conditions and such assembled constructs can be perfusion- cultured in vitro and develop into prevascularized, porous constructs that support high postimplantation cell survival. The Specific Aims of this project are: (1) design, fabrication, and characterization of modularly assembled large porous fibrin hydrogels laden with human umbilical vein endothelial cells (HUVECs) and hMSCs; (2) in vitro culture of large porous cell-laden constructs under perfusion and characterization of capillary morphogenesis and cell viability; (3) implantation of prevascularized porous constructs and characterization of in vivo function of the capillary networks and postimplantation survival of transplanted cells. The method proposed in this application will provide a platform to create centimeter-sized porous constructs containing capillary networks that undergo anastomosis with the host vasculature after implantation and allow interstitial flow of body fluids. Successful accomplishment of this project will address the problem of insufficient mass transfer that hampers creation of functional 3D tissue products of clinically relevant sizes. (End of Abstract)
描述(由申请人提供):
组织工程在创建可以替代人类患病或失去组织的功能组织方面具有巨大的希望。最近,已经达成共识,即三维(3D)组织培养在概括体内细胞微环境和组织结构方面优于传统的二维(2D)细胞培养。已经发现,许多工程组织仅在3D系统中开发时才能实用。尽管公认的3D组织工程和已经做出的巨大努力具有公认的重要性,但发展临床相关尺寸的大型且可行的3D组织的进展仍然受到限制。创建此类组织产品的一个主要挑战是在大型和血管构建体的内部区域中的传质不足。尽管可以通过灌注培养在体外增强由预先形成的多孔支架制备的大型构造中的传质,但是在将这些构建体植入体内后,质量转移仍然不足。另一方面,一些原位形成水凝胶使封装的内皮细胞形成毛细血管网络,在植入后与宿主脉管系统发生吻合,但是没有大孔的水凝胶构建体不能灌注培养,因此它们的大小受到限制。缺乏创建大型灌注水凝胶构建体的方法,这些水凝胶构建体支持体外内皮毛细血管形态发生,以限制我们解决3D组织工程中质量转移不足的问题的能力。该R21应用的目的是使用模块化装配方法来开发包含内皮毛细血管网络的大型多孔水凝胶构建体,并检查这些构建体中细胞的植入后存活。这项工作的中心假设是,具有良好控制形态的纤维蛋白微凝胶,并充满了内皮细胞和其他感兴趣的细胞,可以模块化地组装成大型的多孔构造中,通过在生理允许的条件下明智地选择的化学反应,在生理上允许的条件下出现,并且这种组装的结构可以灌注培养的培养物,并在培养的培养物中逐渐构建,并逐渐逐渐构建量化,并逐渐构建了量化的量化。该项目的具体目的是:(1)模块化的大型多孔纤维蛋白水凝胶带有人脐静脉内皮细胞(HUVEC)和HMSC的设计,制造和表征; (2)在灌注和毛细血管形态发生和细胞活力的表征下,大型多孔细胞构建体的体外培养; (3)植入毛细血管网络的体内功能和移植细胞的植入后存活的体内功能的表征。本应用程序中提出的方法将提供一个平台,以创建含有毛细血管网络的厘米大小的多孔构建体,这些毛细管网络在植入后与宿主脉管系统发生吻合,并允许体液的间隙流动。该项目的成功完成将解决质量转移不足的问题,这会阻碍创建临床相关尺寸的功能性3D组织产品。 (抽象的结尾)
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A biological approach to assembling tissue modules through endothelial capillary network formation.
通过内皮毛细血管网络形成组装组织模块的生物学方法。
- DOI:10.1002/term.2008
- 发表时间:2015
- 期刊:
- 影响因子:3.3
- 作者:Riesberg,JeremiahJ;Shen,Wei
- 通讯作者:Shen,Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Shen其他文献
Wei Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Shen', 18)}}的其他基金
Enhance myogenic transdifferentiation efficiency using engineering approaches
利用工程方法提高生肌转分化效率
- 批准号:
10647491 - 财政年份:2023
- 资助金额:
$ 21.93万 - 项目类别:
Nanoscale Assembly of Bioactive Ligands to Enhance Endothelial Differentiation
生物活性配体的纳米级组装以增强内皮分化
- 批准号:
8241196 - 财政年份:2012
- 资助金额:
$ 21.93万 - 项目类别:
Nanoscale Assembly of Bioactive Ligands to Enhance Endothelial Differentiation
生物活性配体的纳米级组装以增强内皮分化
- 批准号:
8410532 - 财政年份:2012
- 资助金额:
$ 21.93万 - 项目类别:
Modular Assembly Approach to Engineer Prevascularized Large 3D Tissue Constructs
用于设计预血管化大型 3D 组织结构的模块化组装方法
- 批准号:
8138172 - 财政年份:2011
- 资助金额:
$ 21.93万 - 项目类别:
相似国自然基金
肿瘤球混合堆砌-诱导分化构建同源性血管化结肠癌类器官用于血管发生干预靶点筛选
- 批准号:82373453
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非小细胞肺癌中靶向抑制同源性重组修复增敏免疫检查点抑制剂疗效的研究和机制探索
- 批准号:82103045
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
非小细胞肺癌中靶向抑制同源性重组修复增敏免疫检查点抑制剂疗效的研究和机制探索
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
FHF2对肥厚心肌钙致钙释放的影响及其机制研究
- 批准号:81900249
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
PTEN通过激活细胞程序性坏死通路促进APP淀粉样蛋白代谢的机制研究
- 批准号:81901116
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10841794 - 财政年份:2020
- 资助金额:
$ 21.93万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10622873 - 财政年份:2020
- 资助金额:
$ 21.93万 - 项目类别:
1/2 Allogeneic Human Mesenchymal Stem Cell (MSC) Injection in Patients with Hypoplastic Left Heart Syndrome: A Phase IIb Clinical Trial
1/2 异体人间充质干细胞 (MSC) 注射治疗左心发育不全综合征患者:IIb 期临床试验
- 批准号:
10274833 - 财政年份:2020
- 资助金额:
$ 21.93万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10636647 - 财政年份:2020
- 资助金额:
$ 21.93万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10439796 - 财政年份:2020
- 资助金额:
$ 21.93万 - 项目类别: