Understanding the Benefits of Infrared Nerve Stimulators for Neural Interfaces
了解红外神经刺激器对神经接口的好处
基本信息
- 批准号:8297930
- 负责人:
- 金额:$ 47.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-03-01 至 2017-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAction PotentialsAcuteAnimal ModelAnimalsAreaAuditory Evoked PotentialsAuditory systemBiological ModelsCaviaChronicCochleaCochlear ImplantsCollaborationsDataDevelopmentDevicesDoseElectric StimulationElectrodesEnvironmentEvoked Potentials, Auditory, Brain StemFelis catusFiberFluorescenceFrequenciesGoalsHearingHearing Impaired PersonsHeatingHistologyHumanImplantIndustryInferior ColliculusInkLaboratory ResearchLasersLightLocationMapsMasksMeasurementMeasuresMethodsModiolusMusicNational Institute on Deafness and Other Communication DisordersNerveNeuronsNeurophysiology - biologic functionOperative Surgical ProceduresOpticsPatternPerformancePhasePhysiologic pulsePhysiologicalPopulationPreparationPropertyPulse RatesRadiationResearchResourcesRisk ManagementSafetyShapesSiteSmall Business Technology Transfer ResearchSourceSpottingsStimulusSystemTechnologyTemperatureTestingTimeTissuesUniversitiesWidthWireless Technologybasedesignganglion cellimplantationimprovedin vivoinnovationinsightminiaturizeneural prosthesisneural stimulationneuroprosthesispre-clinicalprototyperelating to nervous systemresearch studyresponseround windowspeech recognitionspiral ganglion
项目摘要
DESCRIPTION (provided by applicant): The goal for neuroprostheses is to restore neural function to a condition having the fidelity of a healthy system. However, contemporary neural prostheses, including cochlear implants, are not able to achieve this goal. The devices use electrical current to stimulate the neurons, which spreads in the tissue and consequently does not allow stimulation of focused populations of neurons. Therefore, high fidelity stimulation is no possible. In our model system, the cochlea, it has been argued that the performance of cochlear implant users could be increased significantly if more discrete locations of neurons situated along the electrode could be stimulated simultaneously. This might be possible with devices that use focal optical radiation to stimulate neurons. Today we know that infrared neural stimulation (INS) is possible, that stimulation rates can be achieved that allow encoding of acoustic information, that the spatial selectivity in the cochlea is about five times more selective than electrical stimulation, and that single channel stimulation in chronic experiments shows no functional damage of the cochlea over at least six weeks. The five-year project proposed here is a logical progression of our previous experiments. The aims include validating that the selectivity of INS will result in a larger number of independent channels, demonstrating that a three-channel device can safely stimulate an implanted cochlea over several weeks, and showing that each channel of multichannel INS can independently encode information to be perceived by the auditory system. At the conclusion of the project period we intend to present a prototype for a multi-channel neural interface for the human, here a cochlear implant. To determine the minimum channel separation for independent stimulation, we will implant a three-channel device in deaf cats. Recordings from the inferior colliculus will be used to construct spatial tuning curves (STCs). Non-overlapping STCs indicate separation of the channels. The distance between the stimulation sources will be altered systematically until independent stimulation at neighboring stimulation sources is obtained. By varying stimulus parameters such as the repetition rate, the pulse shape, and the delay between neighboring channels, the experiments will also provide information on the temporal properties of optical stimulation. Long-term stimulation after chronic implantation of a three-channel device into a cat cochlea will determine the safety. Evoked auditory responses will be measured and will provide information on cochlear function and safety. Results will be confirmed through histology. Measurements with temperature sensitive ink will provide important information on the heat load during stimulation. At the conclusion of this project, a prototype human optical cochlear implant will be constructed based on the physical and the optical requirements.
PUBLIC HEALTH RELEVANCE: The long-term objective of the proposed experiments is to design and build safe optical neural prostheses with significantly improved spatial selectivity, here increased spatial selectivity for spiral ganglion cell stimulation. As a consequence, it is expected that cochlear implants will provide significantly more independent perceptual channels to the implant user that can be used in parallel and thus improve speech recognition in noisy listening environments and provide music appreciation.
描述(由申请人提供):神经假体的目标是将神经功能恢复到具有健康系统忠诚度的状况。但是,当代神经假体(包括人工耳蜗)无法实现这一目标。设备使用电流刺激神经元,该神经元扩散在组织中,因此不允许刺激聚焦的神经元种群。因此,高保真刺激是不可能的。在我们的模型系统中,有人认为,如果可以同时刺激位于电极沿电极的神经元的更离散的位置,则可以显着提高人工耳蜗使用者的性能。使用局灶性光辐射刺激神经元的设备可能是可能的。今天,我们知道红外神经刺激(INS)是可能的,可以实现允许编码声学信息的刺激速率,即耳蜗中的空间选择性比电刺激的选择性高五倍,并且在至少六个星期中,慢性实验中的单个通道刺激在无效的实验中没有功能损害。这里提出的五年项目是我们以前的实验的逻辑发展。目的包括验证INS的选择性将导致大量独立的通道,这表明三通道设备可以在几周内安全刺激植入的耳蜗,并表明多通道INS的每个通道都可以独立编码信息以被听觉系统所感知。在项目期间结束时,我们打算为人类的多通道神经界面提供一个原型,这里是人工耳蜗。为了确定独立刺激的最小通道分离,我们将在聋猫中植入三通道设备。来自下丘的记录将用于构建空间调谐曲线(STC)。非重叠的STC表示通道的分离。刺激源之间的距离将系统地改变,直到获得相邻刺激来源的独立刺激。通过改变刺激参数,例如重复率,脉冲形状和相邻通道之间的延迟,实验还将提供有关光刺激的时间特性的信息。将三通道装置慢性植入到CAT耳蜗中后的长期刺激将确定安全性。将测量诱发的听觉响应,并将提供有关人工耳蜗功能和安全性的信息。结果将通过组织学证实。用温度敏感的墨水测量将提供有关刺激过程中热负荷的重要信息。在该项目的结论结束时,将根据物理和光学要求建造人类光学耳蜗的原型。
公共卫生相关性:拟议的实验的长期目标是设计和建立具有显着提高空间选择性的安全光学神经假体,此处提高了螺旋神经节细胞刺激的空间选择性。结果,预计人工耳蜗将为植入物用户提供更独立的感知渠道,这些渠道可以并行使用,从而改善嘈杂的听力环境中的语音识别并提供音乐欣赏。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(5)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CLAUS-PETER RICHTER其他文献
CLAUS-PETER RICHTER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CLAUS-PETER RICHTER', 18)}}的其他基金
Understanding the Benefits of Optical Nerve Stimulators for Neural Interfaces
了解视神经刺激器对神经接口的好处
- 批准号:
9933646 - 财政年份:2019
- 资助金额:
$ 47.02万 - 项目类别:
Understanding the Benefits of Infrared Nerve Stimulators for Neural Interfaces
了解红外神经刺激器对神经接口的好处
- 批准号:
8434109 - 财政年份:2012
- 资助金额:
$ 47.02万 - 项目类别:
Understanding the Benefits of Infrared Nerve Stimulators for Neural Interfaces
了解红外神经刺激器对神经接口的好处
- 批准号:
8640907 - 财政年份:2012
- 资助金额:
$ 47.02万 - 项目类别:
Understanding the Benefits of Infrared Nerve Stimulators for Neural Interfaces
了解红外神经刺激器对神经接口的好处
- 批准号:
9012072 - 财政年份:2012
- 资助金额:
$ 47.02万 - 项目类别:
Development of a Novel Laser Instrument for Advanced Medical Applications
开发用于先进医疗应用的新型激光仪器
- 批准号:
8299462 - 财政年份:2011
- 资助金额:
$ 47.02万 - 项目类别:
Development of a Novel Laser Instrument for Advanced Medical Applications
开发用于先进医疗应用的新型激光仪器
- 批准号:
8531011 - 财政年份:2011
- 资助金额:
$ 47.02万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of A Focused Ultrasound Device for Noninvasive, Peripheral Nerve Blockade to Manage Acute Pain
开发用于非侵入性周围神经阻断来治疗急性疼痛的聚焦超声装置
- 批准号:
10740796 - 财政年份:2023
- 资助金额:
$ 47.02万 - 项目类别:
Development of Specializations Required for Temporal Coding in Octopus Cells
章鱼细胞时间编码所需专业化的发展
- 批准号:
10541129 - 财政年份:2021
- 资助金额:
$ 47.02万 - 项目类别:
Development of Specializations Required for Temporal Coding in Octopus Cells
章鱼细胞时间编码所需专业化的发展
- 批准号:
10686066 - 财政年份:2021
- 资助金额:
$ 47.02万 - 项目类别: