Fast Kinetic Investigations of Nitric Oxide Synthase
一氧化氮合酶的快速动力学研究
基本信息
- 批准号:7568886
- 负责人:
- 金额:$ 19.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-01-01 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAffectAmino AcidsAreaAtherosclerosisBindingBiologyBiomedical ResearchBlood SubstitutesCalmodulinCarbon MonoxideCatalysisChemistryComplexDiabetes MellitusElectron TransportElectronsElementsEnvironmentEnzymesGenetic RecombinationGoalsHealthHemeHypertensionImmune systemIndiumInvestigationKineticsKnowledgeLasersLigand BindingLigandsMammalsMeasuresMethodologyMethodsMolecularMonitorNADPNOS1 protein, humanNeuronsNitric OxideNitric Oxide SynthaseNitric Oxide Synthase Type INitrogenOutcomeOxidoreductaseOxygenOxygenasesPhysiologic pulsePhysiologicalPhysiological ProcessesPhysiologyPlayPrincipal InvestigatorProcessProductionPropertyProtein IsoformsProteinsPublic HealthPulse takingReactionRegulationResearchRoleSeptic ShockSickle Cell AnemiaSignaling MoleculeSourceSpectrum AnalysisStudentsTestingTherapeuticTherapeutic AgentsTimeVasodilationVasodilation disorderWorkabsorptionbasecofactorcytokinecytotoxicdesigndrug developmentinsightmutantnanosecondneurotransmissionoxidationphotolysistetrahydrobiopterinultraviolet
项目摘要
Nitric Oxide (NO) is involved in numerous physiological functions including vasodilatation.neurotransmission,
and cytotoxic actions of the immune system. Understanding NO synthesis by nitric oxide synthase (NOS) will
aid in drug development (for hypertension, atherosclerosis, diabetes) and therapeutic treatments (sickle cell
anemia, blood substitutes, and septic shock) that utilize NO bioactivity. Determining catalytic and regulatory
mechanisms of NOS is critical for understanding how NO is produced and managed physiologically, and for
designing therapeutic agents that target NOS function. Determining the molecular mechanisms behind the
regulation and physiological production of NO by NOS is our research goal. Our objective is determining how
the kinetics of CO, NO, and 62 binding to NOS are controlled by conformational changes induced by
cofactors and substrate. Our hypothesis is that the binding of substrates and cofactors has a direct effect on
the reactivity and accessibility of the active site. Our rationale is that understanding the modulation of ligand
binding and heme reactivity by substrate and cofactor binding is crucial for under-standing how NO is
produced and managed endogenously. We will use a specialized multichannel (200-800 nm) laser-based
nanosecond time-resolved spectrophotometer to measure the fast kinetics of ligand binding, electrontransfer,
and oxygen activation involved in NO synthesis as a function of the binding of substrate and
cofactors. Our aims are: 1) By measuring CO bimolecular recombination kinetics as a function of cofactor
interactions, determine the structural mechanism for the binding of cofactors altering the reactivity of NOS.
Our hypothesis is that the binding of cofactors modulates heme reactivity by inducing conformational
changes. 2) Determine how NOS controls the binding and release of NO by measuring recombination
kinetics as a function of cofactor interactions. Our hypothesis is that binding cofactors causes structural
changes, altering the binding kinetics of NO. 3) Determine the structural mechanism behind CaM regulation
in neuronal NOS. The PI hypothesizes that control elements in the reductase domain affect the reactivity of
the active site. 4) Determine how the binding of cofactors alters reactivity to oxygen and alters electron
transfer reactions of NOS. Our hypothesis is that 02 binding and kinetics are influenced by the binding of
cofactors. We will examine the kinetics of oxygen binding and the formation of oxygen activated
intermediates in neuronal NOS (nNOS) using nanosecond multichannel absorption spectroscopy after flowflash
initiation of the reaction with Oz- Relevance to Public Health: Knowledge of the specific molecular
mechanisms of how NO is produced and managed physiologically by the binding of substrates and cofactors
is crucial to understanding and controlling NO physiology and understanding how compromised NO
physiology leads to deleterious health effects.
一氧化氮 (NO) 参与多种生理功能,包括血管舒张、神经传递、
和免疫系统的细胞毒性作用。了解一氧化氮合酶 (NOS) 合成 NO 将
协助药物开发(高血压、动脉粥样硬化、糖尿病)和治疗(镰状细胞
利用 NO 生物活性的贫血、血液代用品和感染性休克)。确定催化和调节
NOS 的机制对于理解 NO 的产生和生理管理至关重要,并且对于
设计针对 NOS 功能的治疗药物。确定背后的分子机制
NOS对NO的调节和生理产生是我们的研究目标。我们的目标是确定如何
CO、NO 和 62 与 NOS 结合的动力学受以下因素诱导的构象变化控制:
辅因子和底物。我们的假设是底物和辅因子的结合对
活性位点的反应性和可及性。我们的基本原理是了解配体的调节
底物和辅因子结合的结合和血红素反应性对于理解 NO 的作用至关重要
内生地产生和管理。我们将使用基于专业多通道(200-800 nm)激光的
纳秒时间分辨分光光度计,用于测量配体结合、电子转移、
NO 合成中涉及的氧活化作为底物结合的函数
辅助因子。我们的目标是:1) 通过测量 CO 双分子重组动力学作为辅因子的函数
相互作用,确定改变 NOS 反应性的辅因子结合的结构机制。
我们的假设是辅助因子的结合通过诱导构象来调节血红素反应性
变化。 2) 通过测量重组确定 NOS 如何控制 NO 的结合和释放
作为辅因子相互作用的函数的动力学。我们的假设是结合辅助因子会导致结构
变化,改变 NO 的结合动力学。 3)确定CaM调节背后的结构机制
在神经元 NOS 中。 PI 假设还原酶结构域中的控制元件会影响
活性位点。 4) 确定辅助因子的结合如何改变对氧的反应性并改变电子
NOS的转移反应。我们的假设是 02 结合和动力学受到 02 结合的影响
辅助因子。我们将研究氧结合的动力学和氧活化的形成
Flowflash 后使用纳秒多通道吸收光谱分析神经元 NOS (nNOS) 中的中间体
与 Oz 反应的引发-与公共卫生的相关性:特定分子的知识
NO 通过底物和辅助因子的结合产生和生理管理的机制
对于理解和控制 NO 生理学以及了解 NO 如何受损至关重要
生理学会导致有害的健康影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raymond M. Esquerra其他文献
A high-throughput method for quantifying Drosophila fecundity
量化果蝇繁殖力的高通量方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Andreana Gomez;Sergio Gonzalez;Ashwini Oke;Jiayu Luo;Johnny K. B. Duong;Raymond M. Esquerra;Thomas Zimmerman;Sara Capponi;J. Fung;T. Nystul - 通讯作者:
T. Nystul
Raymond M. Esquerra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raymond M. Esquerra', 18)}}的其他基金
Fast Kinetic Investigations of Nitric Oxide Synthase
一氧化氮合酶的快速动力学研究
- 批准号:
8414792 - 财政年份:2013
- 资助金额:
$ 19.39万 - 项目类别:
Fast Kinetic Investigations of Nitric Oxide Synthase
一氧化氮合酶的快速动力学研究
- 批准号:
9023559 - 财政年份:2013
- 资助金额:
$ 19.39万 - 项目类别:
Fast Kinetic Investigations of Nitric Oxide Synthase
一氧化氮合酶的快速动力学研究
- 批准号:
8634126 - 财政年份:2013
- 资助金额:
$ 19.39万 - 项目类别:
Fast Kinetic Investigations of Nitric Oxide Synthase
一氧化氮合酶的快速动力学研究
- 批准号:
9023559 - 财政年份:2013
- 资助金额:
$ 19.39万 - 项目类别:
Fast Kinetic Investigations of Nitric Oxide Synthase
一氧化氮合酶的快速动力学研究
- 批准号:
8814248 - 财政年份:2013
- 资助金额:
$ 19.39万 - 项目类别:
Fast Kinetic Investigations of Nitric Oxide Synthase
一氧化氮合酶的快速动力学研究
- 批准号:
8634126 - 财政年份:2013
- 资助金额:
$ 19.39万 - 项目类别:
Altered Nitrite Reductase Activity in Diabetics (E4)
糖尿病患者亚硝酸还原酶活性改变 (E4)
- 批准号:
8294464 - 财政年份:2011
- 资助金额:
$ 19.39万 - 项目类别:
相似国自然基金
孕期母体支链氨基酸代谢紊乱和子代支链氨基酸代谢酶基因遗传变异联合作用对儿童神经行为发育影响的队列研究
- 批准号:82373581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氨基酸多态性对代谢生成亚硝(酰)胺前体物的影响机理研究
- 批准号:22376114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
影响植物磷砷选择性吸收关键氨基酸位点的挖掘及分子机制研究
- 批准号:42307009
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低蛋白日粮脂肪和蛋白质互作影响氨基酸消化率的机制
- 批准号:32302793
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MiCMV NIa-Pro 111位氨基酸对致病性的影响及作用机制
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Mechanisms of HIV fitness and drug resistance inferred from high-resolution molecular dynamics and sequence co-variation models
从高分辨率分子动力学和序列共变模型推断出 HIV 适应性和耐药性的机制
- 批准号:
10750627 - 财政年份:2023
- 资助金额:
$ 19.39万 - 项目类别:
Novel Therapeutics for Heart Failure: Modified, Water-Soluble Caveolin-1 Scaffolding Domain Peptides with Improved Characteristics for Drug Development
心力衰竭的新型疗法:修饰的水溶性 Caveolin-1 支架结构域肽,具有改进的药物开发特性
- 批准号:
10599654 - 财政年份:2023
- 资助金额:
$ 19.39万 - 项目类别:
Actions of spiropyrimidinetriones against bacterial type II topoisomerases
螺嘧啶三酮对细菌 II 型拓扑异构酶的作用
- 批准号:
10750473 - 财政年份:2023
- 资助金额:
$ 19.39万 - 项目类别:
Development of Modified Caveolin-1 Scaffolding Domain Peptides with Improved Pharmacological Properties as Therapeutic Agents for Scleroderma Skin Disease
开发具有改善药理特性的修饰的 Caveolin-1 支架结构域肽作为硬皮病皮肤病的治疗剂
- 批准号:
10544238 - 财政年份:2022
- 资助金额:
$ 19.39万 - 项目类别:
Gluten peptide presentation in celiac disease: investigating the role of transglutaminase 2 using novel chemical probes
乳糜泻中的麸质肽呈递:使用新型化学探针研究转谷氨酰胺酶 2 的作用
- 批准号:
10536560 - 财政年份:2022
- 资助金额:
$ 19.39万 - 项目类别: